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Abstract : The quantum   electromagnetic flux is studied as operators for magnetic flux quantization in the 

Bohr atom. We find that this quantization rule can be found from an elementary analysis of a Bohr electric 
oscillator treated like an L-C circuit. The electromagnetic flux quantization agrees for instanton configuration 

so there is no radiation in the Bohr atom and we have a stable atomic system . 
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I. Introduction 
The magnetic flux quantization ( M.F.Q) was studied by London about the properties of the wave function 

phase [1, 2], leading  to the experimental discovery of the M.F.Q [3]. Here, the wave function phase is given by 

an integration of the vector potential along a path with arbitrary initial point, and end point exactly where we 
have the argument of the wave function [4]. In a ring this approach gives the magnetic flux quantization 

2
A.dr n

e


        n 1, 2,....      (1) 

One of the most important effects of equation (1) is the Aharonov-Bohm effect [5], where two-slit interference 

patterns of electrons show the action of the electromagnetic field in regions where it is absent. The clear 

interpretation of this phenomenon is by the non local character of the electromagnetic interaction [5]. 

Here, we adopt the point of view that the electromagnetic flux quantization is a natural consequence of the 

principles of quantum electrodynamics. It was suggested that the magnetic flux may be considered as an 

operator  b , whose canonical pair is the electric flux  e , and that both are linked in a ring by the commutation 

rule. 

 
e b, i   

 
           (2) 

Using this equation and applying a boundary condition on  e that reflects the charge quantization one arrives at 

Eq. (I) [1]. 

In this paper, section 2 we introduce the electromagnetic field like a wave and we obtain equation (2). In 

section3, we show how to derive equation (2) from the quantization of Bohr model like a LC electric oscillator. 

In section 4 Energy transformation and conversion in hydrogen atom is discussed.  

 

II. The Electromagnetic Flux Quantization 
We will show here how equation (2) can be deduced from the principles of quantum eletrodynamics. Let us take 

the usual electromagnetic Lagrangian [1]. 

 

1
L F F

4



            (3) 

With F A A        

from which we immediately we obtain 

0L / A 0     and k 0k kL / A F E          (4) 

The quantization of the temporal term will not concern us here. The spatial quantization rule is given by 

 

  3
i j i, jE (x, t),A (y, t) i (x y)     

 

   
       (5) 

We define the electric flux and magnetic flux operators by 

 

 
ew 1E.dS             (6) 
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 
bw 2B.dS             (7) 

Using equation (5), we obtain 

    i j
i jew bw 1 2, E (x, t),A (y, t) dS (x)dl i     

    
  

      (8) 

3 i j

i, j 1 2i (x y)dS (x)dl i    
  

        (9) 

where we adopted the repeated  index sum rule convention. 

Here, we claim that the electromagnetic flux quantization is suitable to study non local aspects of 

electrodynamics. 

This Electromagnetic Flux Quantization (EFQ), corresponds to the configuration  E B , where the Poynting 

vector is nonzero so that the Bohr atom would be unstable if we include equation (8) in the original Bohr model. 

So what type of wave configuration is suitable for the Bohr model? In reference [6], the author consider that 

0
0 0

0




E H when  E B which is wrong as we will see in the next section. 

 

III. Formulation of the Problem of Bohr model like a L- C circuit 
In the Bohr model, the radiant electromagnetic field is not considered because the electron to radiate energy fall 

spiral into the nucleus. Bohr thought that the atom was stable if electromagnetic wave should not radiate being 

the Poynting vector equal to zero, so he does not consider the electromagnetic wave on its own model, [7, 8]. 

The Born atom like a closed system can be analyzed in terms of capacitive and inductive elements, such as the 

classical L-C circuit. The energy stored in C is given by 
2

C

Q
U

2C
           (10) 

 where Q is the charge in the capacitor. But ,Q = 
eQ   where  e  is the electric flux in the capacitor, and   

is the dielectric constant of  the capacitor medium. Therefore,  
2

2

C eU
2C


            (11) 

In the same way, the energy stored in L is given by 
2

L

Li
U

2
           (12) 

 However, from b Li  , where i  is the current in the circuit, we have  

2

L b

1
U

2L
            (13) 

If we consider the photon energy interacting with the system electron-ion, (see section 2) 

2 2

w ew bw

1 1
U I

2 2
             (14) 

Where I is the interaction between the electron-ion Bohr system and the wave 

configuration  (photon). Adding (11), (13) and (14), we get the total energy stored in the system. 
2

2 2 2 2

e b ew bw

0 0

1 1 1
H I

2C 2L 2 2


        

 
     (15) 

 Using the energy conservation we are led to 
2 . . . . .

e b ew bwe b ew bw

0 0

1 1 1
I 0

C L


            

 
    (16) 

 which can be solved by 
.

E EW

B BW

H





 


   and  

.

B BW

E EW

H





  


     (17) 
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 This implies that the system described by (15) is Hamiltonian, and the new variables 
e ew and 

b bw  form a 

canonical pair. Since they have, in this system, a role analogous to the (p, q) variables in classical mechanics. 

Therefore, the quantization of this system requires 

 
e ew b bw, i 

   
 

         (18) 

However for an electromagnetic waves the maximum electric field energy is 
2

0

1

2
ew WU dv  E  and the 

maximum magnetic energy is 
2

0

1

2
mw WU dv  H with the Maxwell condition  E H . Here, equation (18) is 

not satisfied because the terms 
. . .

ew bwew bw

0 0

1 1
I     

 
        (19) 

are not constants so equation (18)is not satisfied. 

In reference [6], the author Huang considers that 0
0 0

0




E H when  E B , then equation (18) is not 

satisfied. According to our proposal Huang's solution is incorrect or wrong  as we will see in the next section 

because the atom  is unstable. 

We intend to use and apply here the E.F.Q presented above before showing how it develops from quantum 

electrodynarnics. We think that its "deduction" from the quantization of an L-C circuit is convincing enough to 

carry out an immediate study of its applications. 

From equation (10) we will build up an approach of the EFQ in which the states will be described in the electric 

flux representation. That means that the wave function will be given by  

 

e ew            (20) 

and, in order to satisfy equation (10), we make 

 


b bw

e ew

i




  


          (21) 

where e ew and b bw  are respectively the total electric and magnetic flux operators.  

 

IV. Energy transformation and conversion in hydrogen atom 
 
In quantum circuit [9], for a lossless LC quantum circuit, which is composed of an inductance L and a 

capacitance C , the charge q on the capacitance and the variable p satisfy the commutation relation  Q,p i   

, where p is given by
q

p(t) L
t





. Because the magnetic flux through the inductance

q
p(t) L

t


  


, and 

the voltage across the inductance (or the capacitance) 
Q

U
C

 , the commutation relation between  U and  is: 

 C U, i   . (Here, Q , p ,U , are operators in quantum  mechanics, C and L are constants ). It means that 

any measurement on the magnetic flux  through a solenoid must be with a perturbation on its voltage U. 
It should be pointed out that Eq. (18) to (21) are the foundation of our study.  

The energy of the electromagnetic wave is 

2 2

0 0

1
( )

2
w f w wU U dv    E H       (22) 

Which diverges when  E B , so equations (18) and (19) are not satisfied because the total energy electron-ion 

+ electromagnetic energy +I is not a constant, and the electron emits radiation and spiraling into the 
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nucleus.These two equations together must indicate a process of perfect periodically transformation of two 

forms of energy (kinetic energy
2 / 2k e LU m u U   and field energy

2

2
f C

Q
U U

C
  ) inside the atom and 

the conservation of energy in the system 

total C LU U U         (23) 

Recall the macroscopic harmonic LC oscillator where two forms of energy, the maximum field energy 
2

2
C

Q
U

C
  of the capacitor C (carrying a charge Q ) and the maximum  magnetic energy 

2

2
L

L
U

L
  of the 

inductor L, are mutually interchangeable ( total C LU U U  ) with a exchange periodic 2T LC . 

To satisfy equation (21), which is the Bohr equation, the microscopic photon  or electromagnetic wave must be 

considered as a stationary wave in instanton configuration [8, 9].  

The maximum field energy 

 
2

0

1

2
fw wU dv  E          (24) 

and the maximum magnetic energy 

 
2

0

1

2
mw wU dv  H         (25) 

 must satisfy 

0
totalw fw kwU U U   ,         (26) 

so the interaction must be 

0I            (27) 

 and 

0

0

W Wi



E H .         (28) 

In this configuration with WE  II WH  the Pointing vector is 0W W W  P E H , so the Bohr atom is stable. 

Following [9], in this reference we show that the quantization appears for the Bohr atom with n as the principal 

quantization number. 

Based on the above energy relationship for three totally different systems and the requirement of the 

electromagnetic interaction (by exchanging photon) between electron and nuclei, we assure that the kinetic 

energy of electron, Eq. (21) is a kind of magnetic energy and the hydrogen atom is a natural microscopic LC 

oscillator [10]. 

The Bohr’s model seems newly reconciled with quantum mechanics and yields surprisingly accurate predictions 

for hydrogen and other small molecules. Even today the Bohr model has valid roles in describing highly exited 

Ryberg atoms cavity quantum electrodynamics and quasi-Ridberg states in graphene. [11] 

 

Conclusion 

The quantum approach to the electric and magnetic fluxes was reconsidered. These quantities was treated as 

operators, and we discuss how this approach takes into account of the magnetic flux quantization in the Bohr 

atom. We discuss the derivation of the electromagnetic flux quantization. We also show that this quantization 

rule can be found from an elementary analysis of a Bohr electric oscillator like an L-C circuit including the 

electromagnetic wave like an instanton configuration. 
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