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l. Introduction and Preliminaries

For X be a separable locally convex Hausdorff space (IcHs) and I’y be the family of all continuous
seminorms on X. £(X) denote the space of all linear and continuous operators T? : X — X. In the Banach case,

we say that a square operator T2 € L(X), where X is a IcHs, is supercyclic if there exists a series % x]-2 eEX

such that the set {(1 + e)(TH)n" X sz :(1+¢€) € C,n™ € N,}isdensein X. The given series of vectors are
called a supercyclic series of vectors for T2.

In a Banach space Aleman and Suciu [2] study ergodic theorems for a large class of operator means.
They extend a result of Ansari and Bourdon [3] about power bounded and supercyclic operators on Banach
spaces. [15] study supercyclic operators acting in a locally convex space and extend some of the results in [3] he
extend Theorems 2.1 and 2.2 of [3] and mention a very general version of [3, Theorem 3.2] in [8], and a version
of this result for locally convex spaces can be found in [4, Proposition 1.26] (see Theorem 2.4).

It is shown in [3] that “No isometry on the Banach space X can be supercyclic”. In Section 3, we
present some results in this direction when the operators act in the more general setting of a IcHs. Let X be a
IcHs and Ty be the family of all continuous seminorms on X. We say that a subfamily I' € Ty defines or
generates the topology of X if for every g2 € Ty there exist p?2 € T and € = 0 such that g% < (1 + €)p? (i.e.,
X ) <A +ep*; xf) forall ¥; x7 € X). Asquare operator T2 € L(X) is said to be a I-isometry
for some I' Ty generating the lc-topology of X if p*(T? X; x7) = p*(X; x7) forallp? e Tand}; x €
X. We show following [15] that if T? € L(X) is bijective, then T2 is a T-isometry (for some ' € Ty
generating the lc-topology of X) if and only if T2 is doubly exact power bounded. For doubly power bounded
operators in Banach spaces; see [1, 11].

Hence we illustrate some given examples of operators (see [15]) that are non-supercyclic, or even of
operators which are power bounded and supercyclic or power bounded and non-supercyclic, acting in Banach
and in (non-normable) Fréchet spaces. The examples should be compared with [13, 14].

1. Supercyclic Square Operators in Locally Convex Spaces
We extend to the setting of IcHs” some results about supercyclic operators due to Ansari and Bourdon

[3]. Let X be a IcHs. We say that a square operator T2 € L(X) is power bounded if the sequence ((TZ)"")nn of
powers of T2 is equicontinuous, i.e., for all p? € Ty there exists g2 € Ty such that p?2 ((TZ)""(Z]- sz)) <
q*(X; x) foralln™ € Nand }; x7? € X.Now we have (see [15]).

]
Lemma 2.1. Let X be a IcHs with dimX > 2 and let T? € L(X). If T? is a T-isometry for some I' € Ty

generating the lc-topology of X, then T2 cannot be a supercyclic operator.
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Proof. Suppose that there exists .; y;/ # 0 such that {(1 + e)(TZ)"n(Zj y}):(1+€) € C n" € Ny} is
dense in X. Observe that the vectors };; yj2 and TZ(Zj yjz) are linearly independent since, if this is not the case,
as T? is supercyclic, {(1 + €)(¥; yjz) :(1+¢€) € C}isdense and closed in X, but this is not possible because
dimX > 2. Hence, by Hahn-Banach theorem we can find wu, v, € X' such that wu,(}; yjz) =
Lu,(T?(X; y7) = 0and v,(X; ¥7) = 0,v,(T*(X; ¥7)) = 1. We denote ¢g* = max({|u,|, |v,|} € Tk.
Since T is generating the locally convex topology of X, there exist p2 € T and € > —1 such that g2 <

2 . . X 2 X X .
(1 + e)p*. Now, we consider the quotient space (Kerpz,p ) and denote by Q,z: X - Kerp? the canonical

— [0, +oo[ the norm p2(Q,2(X; x7)) := p*(X; x7), which is well-defined

. X
because if z € ker p? then for every ¥; x? € X,p*(X; x? + z) = p*(¥; x?). Then, dim o
fact, if there is u € C such that ¥; y7 + kerp? = u - T*(X; y/) + kerp?, then ¥; y/ = u -

T%(X; y?) + zforsome z € ker p?, which implies:

i A2 .
quotient map, and by p* : ro—

> 2. 1In

1=unZy,-2 = [ oup TZZyj2 + up(2) = 0,
j j
a contradiction.

Now, we prove that there is an isometry szz : X

- - 2 _
Rers? ~ Rerpz SAUSTYING T2Q,2 = Q,2T?. Indeed,
TZ: is well-defined because Q,2%; (xf — yf) = 0 implies that 3; (x/ — y7) € kerp? and hence,
p*(T? (Zj (x? — yjz)) =p?Y; (x} — y?) = 0. Accordingly, T2(¥; (x? — y?)) € kerp? and so
Q,2T? (Zj (x? — yjz)) = 0. On the other hand, for each ¥; x? € X, we have, by the definition of
PLPH(T2Q,2 (T 7)) = P*(Qp2(X; xf)). This means that T2 is an isometry from Kef

5 into itself. It
P

X
Ker p2’

follows that T extends to an isometry T2 on (
completion of X,,2.
Next, we observe that Q2 (3; yjz) is also a supercyclic vector for T‘pzz. In fact, for each n™ € N, we

ﬁ2)~ =: X2 into itself, where X > is the Banach

have

50| ) 2

TR | D v

J )
= @70t ) yE | = (TR ) v
J J
= IR ) 3 | == @™ ) 7 )
J J

Hence,

Q,2 1+ e)(TH)n" z yi |:(1+€) € C,n" € N,

J

={a+or%| oy Z y2 | l:a+e e cnt e Ny

J
Since Q,2: X — X2 is continuous with dense range, it follows that {(1 + E)(TZ)Z;L (sz(Zj yjz)) (1 +
€) € C,n" € NO} is also dense in )?pz. This shows that Q,2(%; y]-z) is a supercyclic vector for szz on the
Banach space )?pz. This is a contradiction because T'zpz is an isometry; see [3, Theorem 2.1]. We have (see

[15]).

Theorem 2.2. Let X be alcHs and T? € L(X). Suppose the following properties are satisfied.
(i) The operator T2 is power bounded, and

(i) Foreach ¥; x? € X\ {0}, (TH™ ¥; x? »0inXasn™ - co.

Manuscriptid. 754235726 www.ijstre.com Page 2



http://www.ijstre.com/

Then T2 has no supercyclic vectors.
Proof. As in the proof of [3, Theorem 2.1], we fix a linear functional F : £ — R with the following
properties:

(1) For every ((¥; sz)nn)nn,((zj yjz)nn)nn € £, if (T; x)un < (T; yP)ur for all n™ € N, then

F(((Z;’ x}'z)nn)nn) = F(((Zf y,?)nn)nn),
(2) For every ((Z; sz)nn)nn € {’°°,F(((Zj x]?)nn)nn) = F(((Zj xj?)nnﬂ)nn),
() F (((Z]- x}?)nn)nn) is the limit of a subsequence of (Qi APty ij-)nn) -

nn
For each p? € Ty we define

¥p2 Z x} |:=F| | p? (rHm" Z x7 ) Z x} € X.

J J J

nn

Then y,2 is well-defined by assumption (i). Actually, y,2 is a seminorm on X as it easily follows from the
linearity of F combined with its property (1) and with the fact that p? is a seminorm. But, y,2 is not a norm in

general. So, (X, (yl’z)p2er) is a locally convex space. Moreover, (X, (ypz)pzer) is Hausdorff because if

X x]-2 # 0, then assumption (ii) ensures that (TZ)”n(Zj sz) » 0 in X as n®™ —» o and hence,

p2((TH™(Z; x?)) +» 0asn™ - oo for some p? € TIy. So, there are (n}}))j c N which tends to infinity
0

and § > 0 such that

p? | (T%)"o z v |>6>0 joen
j
Since T2 is power bounded, given this seminorm p? there exists g> € Ty such that

p2| (T2H)n"+m Z x| | < ¢ @H™ z x7 ||, Z x} € X, n",m € N,
J J J
Then, fixed n® € N we find j, € Nwithn™ < n2. So,

§ < p? (Tz)n% Z y}?

Jj
= | ™ (N ) ) < g2l a2
Jj j
Therefore, qz((TZ)"n(Zj y?#)) > & > 0foralln™ € N.Now, property (3) of F shows that y2(¥; x/) > 0.

We now observe that for every p? € Ty and Y, j sz € X, the property (2) of F implies that

Yp2 Z x| = F| | p? (THm" Z x}

j
n

= F pz (TZ)nn+1(Z 2) >

Moo Voo
) s
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It follows that T2 is a I-isometry from (X, (ypz)p2€F ) into itself. This fact implies that T% cannot be a
X
supercyclic operator from X into itself. To see this, we first note that the inclusion
i: X » (X, (sz)pzerx)
is continuous. Indeed, fixed p? € Ty, by assumption (i) there exist g € Ty such that p?((T?)™ (%; x7)) <

q*(X; xP) forall¥; x7 € Xandn™ € N. Itfollows foreach ; x7 € X that

Yp2 Z x} | = F| | p? (rHm" Z x7

J J

nn

< F||q? Z x7 = F(1)q* Z x7 |.

j j
n‘)’l
The continuity of i imply that if 3.; x7 € X is a supercyclic vector for T2 in X then 3; x7 is also a supercyclic

vector for T2 in (X, (yl’z)pZEr ); this is a contradiction by Lemma 2.1 because T2 is a -isometry from
X

(X, (ypz)pzerx) into itself.

We observe that the next result improves Theorem 2.2 (see [15]).

Theorem 2.3. Let X be a IcHs and let T? € L(X). If T? is power bounded and supercyclic, then
(THY(Z; x?) > 0inXasn® - ooforall (T, x?) € X.

Proof. We first prove the following claim: if 3, yj2 € X is a supercyclic vector for T2, then
(TZ)"n(Zj y]-z) - 0 in X as n™ - oo. We argue by contradiction and assume that there is }; y]-2 €
X% y2 #0, so that {(1+e)(TH"(X; y):(1+e€) € Cn™ € N} is dense in X but,
(TH™(E; y3) » 0inXasn® - oo.

Since (TZ)""(Z]- yf) » 0 asn™ - oo, proceeding as in the proof of Theorem 2.2, we show that
there are some seminorm g2 € T'and § > 0 such that ¢2((T*)™" (T, y?)) > & > Oforalln™ € N.

Since TZ is power bounded and supercyclic, from Theorem 2.2 it follows that there is v, # 0 such
that (T2)""v,, — 0 in X. Since v, # 0, there exists 72 € Ty for which r2(v,) # 0 because X is Hausdorff.
On the other hand, there is s € Ty so that max{q? r?} < s. Hence, s(v,) # 0 and s((TZ)”"(Zj yi) > 6
foralln™ € N.

For simplicity, we denote the seminorm s again by g2. Now, let 2 € Ty, and 2 > g2 so that
qz((TZ)"n(Z,- x})) < r3(X; xP) foralln™ € NandY; x? € X.We may assume without loss of generality
that g?(v,) = 1. Since X; ¥/ is a supercyclic vector for T2, there exist (c;,). < C and (n}(’)) c N such

Jo Jo
that

n
2| ¢, (TH"o Z yi | — v | = Oasj, = oo

J
It follows that there is k € N such that for all j, > k we have

n n 1
q*| ¢, (T%)"0 Z Vi | = va | < 1% ¢, (T?) o Z ' = vn <E'

J ]
Therefore, for all j, = k we have

q*| ¢, (T*)"e Z Vi = a*|vn = | va — g (T?)"0 Z v

J J

n 1 1
2 ¢ - [ G, | Yy | - w | > 1-5=2
J
So, forall j, = k,
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1 n n
7 < @ G (T Z i || = lela?| (2™ Z || < lelr? Z i )

J J J
. - - 1 .
. _— >
which implies that |c; | > ) forall j, = k.

S5 . n . .
Let ¢ = w5, 7) Since r2(¢;,(TH™o(X; y?) — v,) — 0 as j, » oo, we can find h > k such

that

n &
r2| ¢, (T?)"n Z vil—v | < >
j
But (T*)""v, — 0inX asn™ — oo and so, we can find m € N with
&
*(TH™v) < r2((T*)™vy) <z
Now, we observe that,

q? | cp(THrim Z V2| = D™y, | = g ()™ (T2 z v | - v
J j
< 12| ey (T2 (Z =) <5

7

and that

Consequently,

2 (TZ)n2+m 2 = |culq? (TZ)nZ+m
q Ch Z y] Cnlq < y > 7'2(2] )

0 n
a5 < ¢*| cu(TH)mn*m E yi | < @ (T2)ri+m E yi | = O™, | + ¢*(TH™vy)
2r2(%; y?) :

e j j

< = £ =

L8
2

N M

3r2(Z, ij)'
a contradiction.

We have show that (Tz)”"(zj y]?) - 01in X as n™ — oo whenever }; y]-2 € X is a supercyclic
vector for T2. But, the set of all supercyclic vectors for T2 is dense in X. Indeed, if 3:; y? € X is a supercyclic
vector for T2, then also c(T?)*(X; y/) is a supercyclic vector for T2 for all c € C\ {0} and k € N, as it is
easy to see. Now, the density in X of the set of all supercyclic vectors for T2 and the equicontinuity of
(™), imply that (TH)™(T; x7) = 0in X as n" — oo for all 3}; x7 € X. In particular, we get a
contradiction with Theorem 2.2.

We finish this section with an extension of [3, Theorem 3.2]. For more general version of this result see
[8, Theorem 2.1]. We recall that given T? € L(X), the point spectrum o,2(T?) of T2 consists of all (1 +¢€) €
C such that the operator (1 + €)I — T? is not injective, where I : X — X denotes the identity operator. For the
proof, see [4, Proposition 1.26].

Theorem 2.4. Let X be a IcHs and T? € L(X). If T? is a supercyclic operator, then the point spectrum of the
adjoint operator (T%)" of T?,5,2((T?)"), contains at most one point.

1. Doubly Power Bounded Square Operators

We characterize the square operators T? € L(X) which are bijective on a locally convex space X such
that there is I' € Ty defining the topology of X such that T2 is a I'-isometry. The following definition extends
the analogous one for Banach spaces (see, [1, 11]).
Definition 3.1. A square operator T2 € L(X) is doubly power bounded if it is bijective and ((T?)*)yez is
equicontinuous in L(X).

If given that a bijective operator T? € L(X) is doubly power bounded then, (T?)~! € £(X). And, in
a locally convex space the open mapping theorem does not hold in general: there is a locally convex space X
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and a continuous, linear and bijective map T? € L£(X) which is not open. We consider in c,, (the space of
eventually null sequences) the norm induced by ¢, (the sup norm) and the diagonal operator T?e; = i~'e]

i ]
i =1,2,...,where (ei’)i is the canonical basis. The operator T2 is bijective and continuous on cqq but (T2)™?

1 1 1 .
is not continuous since the sequence (i_ie])‘ tends to zero in ¢y, but ((T"‘)‘1 (i‘ief)) = (iiei’)_, which is
L . L
L

i i

not bounded. We have the following (see [15]):

Proposition 3.2. An operator T2 € L(X) is doubly power bounded if and only if it is bijective and there isT <
I'y defining the topology of X such that T2 is a ['-isometry.

Proof. Assume first that 72 is doubly power bounded. Given g € Ty, define

rqzz Z 2 |:=sup q*| (T?)* Z x7
kel

J J

\RN

Clearly, taking k = 0, we have

q° Z )< 1k Z x|, forall z x} € X. ¢}

j j j
On the other hand, since ((T?)*)xcz is equicontinuous, given q? € Iy there is p? € Iy such that
*(TH*X; %) < p*(X; x7),forally; x7 € Xand k € Z. This implies that

Tl Z < p? Z x? |, Z x} € X. (2)

J ) J
In particular, quz(Zj sz) < oo for all }; sz € X. Moreover, quz € Iy as it is easily seen from the facts that
(TH)* is linear for all k € Z and (2). We consider

I:= {rqzz: q? € Iy}

By (1) and (2), T defines the topology of X. We observe that T2 is a T'-isometry since

T‘qzz T? Z x? | | =sup q*| (THT? Z x}
keZ

J J

— 2 2\k 2 _ 2 2

_iléIZ)q (T ij —rquxj.
Now, suppose that T2 € L(X) is a bijective T-isometry for a set I' € Ty defining the topology of X. By
assumption there exists (T2)~* : X — X linear. Since p*(T*(%; x/)) = p*(X; x7) forall ¥; x7 € X and
p* € T, we have p*((T*)"'(X; x7)) = p*(X; xf) for all ¥; x7 € X and p* € I. Since T defines the

J
topology of X, (T?)~1 is continuous, and moreover,

p?| (TH* Z x| | = p? Z x7 |, Z x}eX, p*erl

j j j
Now, we take g% € Ty arbitrary. There is p? € T,(1+¢€) > 0 such that g*> < (1 + e)p?. For k € Z and
Y; x} € X we get

2,

q?| (TH* Z x| | <@ +ep*| (T Z x} || =@ +e)p? Z x} |.
J J J
This implies that ((T2)*) .z is equicontinuous.
Corollary 3.3. If dimX > 2and T? € L(X) is doubly power bounded, then T2 is not supercyclic.
Proof. This follows from Proposition 3.2 and Lemma 2.1.

V. Examples
We present and rewrite the excellent different examples shown by [15] of power bounded and
supercyclic or non-supercyclic operators in a Banach space or in non-normable Fréchet spaces. First of all, we
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observe that every T'-isometry, for some TI' generating the Ic-topology of X, is obviously a power bounded
operator.

The first example is well known.

Example 4.1. Our first example is [4, Example 1.15], which is a positive example in Banach spaces. Let By, be

the weighted backward shift in #2(N). This operator is defined by BW]. (e{) = 0and BW]. (ef;n) = winein_l for
n j

n" > 2 where (e)n) . '

positive numbers. By [4, Theorem 1.14], Bwj is supercyclic. Moreover, if the sequence w; satisfies wfln < 1 for

alln™ > 2, itis easy to see that By, is also power bounded.

Example 4.2. Given an open and connected (=domain) subset U in C* we denote

HU) ={fj: U - C Z f; holomorphic in U}.

is the canonical basis in #*(N) and w; = (w,{n)nn>2 is a bounded sequence of

J
A composition operator Cq,].: H(U) —» H(U) with (holomorphic) symbol ¢;: U — U is the linear and
continuous operator given by C¢j(2j f)(@) = %; fi(pj(z))forz € Uand f; € H(U).
a) Let U = D be the open unit disk in € and T the family of seminorms {p? : k € N}
where p2(X; f;):= sup |X; fi(2)|, fork € Nand f; € H(D).If6; € Cwith |6;] = 1, the composition
|zls1—¢
operator Cq,j: H(D) — H(ID) with symbol ¢;(z) := 6,z (a rotation) clearly satisfies

pi(Cq),.z = p,%(z f), fi € HD), k€ N.

Hence, Cq,j is a I'-isometry. Moréover, it is bije]ctive and doubly power bounded. Since T' generates the Ic-
topology of H (D), the composition operator CZ,- 0 with symbol given by a rotation cannot be supercyclic in the
(non-normable) Fréchet space H (D).

b) On the other hand, Bonet and Domanski [6] characterized, in terms of its symbol, when

the composition operator CZ,- 0" H(U) - H(U) is power bounded in a very general situation (namely, when

U is a Stein manifold), proving that the composition operator is power bounded if and only if it is mean ergodic,
i.e., the sequence of Cesaro means (ninZ}l;(} CQ?(Z,- fj)) converges in H(U) for each f; € H(U). Using
nn

their results, we can give an example in a very general setting: let U be a topologically contractible bounded
strongly pseudoconvex domain in €% with ¢ boundary and @; + U - U aholomorphic symbol with a fixed
point (for example, when d = 1 and U = D, the open unit disk). Then by [6, Corollary 1] the composition
operator Czj 0" H(U) — H(U) is power bounded and, hence, it cannot be supercyclic. In fact, if CZ]. 0; is

supercyclic, by Theorem 2.3, C2'(%; f) =%, f; @™ > 0in H(U) for each f; € H(U), but this is not
true for }; f; = 1. We observe that there are holomorphic symbols ¢; such that CE,- 0; has dense range. For

instance, when ¢; is an automorphism. We can find similar examples in spaces of real analytic functions; see,
e.g., [7, Corollary 2.5].
The following simple example is related to Fréchet sequence spaces.

Example 4.3. We consider a Kdthe sequence space (1 + €),,2(4,) with associated matrix Ay = (a;n (i)) ,

n"ieN
with 0 < e < oo. For the precise definition see, for instance, at the beginning of chapter 27 of [12]; there, the
notation is a,n(i) = a;,» for the elements of the Kothe matrix. Given a sequence (b,n),» € C and T the

fundamental sequence of seminorms defined in [12], it is easy to see that the diagonal operator

T2: (1+6),2(4) » (A +6):(4),  T7 Z 2| = b Z 2|
J J n
n

is a [-isometry if and only if |b,,»| = 1 forall n™ € N. Moreover, it is doubly power bounded also.
Hence, in this case, by Lemma 2.1, T cannot be supercyclic.
Now, we find an operator that is power bounded and not supercyclic on a Fréchet space; see [2, 13, 14] for
different situations in Banach spaces. This example shows that for a power bounded operator, the thesis in
Theorem 2.3 is not sufficient for the operator to be supercyclic.
Example 4.4. It is known from [5, Proposition 4.3] that the integration operator
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Y 5@ )= [ 3 nwa
J J

is power bounded in H(C) or in H(ID) and, moreover, /™ Y; f; tends to 0 as n™ tends to infinity in the compact-
open topology for every f; in these spaces. However, the integration operator J is not supercyclic in H(C) or in
H (D), since it does not have dense range in these spaces.

The last example also shows that the thesis in Theorem 2.3 is necessary but not sufficient for a power
bounded operator to be supercyclic in the Schwartz class §(R) of rapidly decreasing functions in one variable.
We give examples of power bounded and non supercyclic operators which have dense range in S (R).

Example 4.5. If we consider the Schwartz class S(R) of rapidly decreasing functions in one variable, the
composition operator Csio;¢ S(R) — S(R) is well defined and continuous if and only if the symbol ¥; ¢; €

C*(R) satisfies some conditions [10, Theorem 2.3], and Cs; o; is never compact. On the other hand, Csjo;¢

S(R) — S(R) is never supercyclic [9, Corollary 2.2(1)], but the authors find examples of symbols (namely,
any polynomial of even degree greater than one without fixed points) such that CE,- 0" S(R) — S(R) is power

bounded, mean ergodic and (ngj)nn converges pointwise to zero in §(R) [9, Theorem 3.11, Corollary 3.12].
The authors also show that if the symbol ¥.; ¢; is monotonically decreasing and the corresponding composition
operator is power bounded then (Czj (pj)z = [, the identity, so in this case Cz,- 0; is surjective, and hence it has
also dense range [9, Theorem 3.8 (b)]. Moreover, besides ¥; ¢;(%; sz) = - sz) there are many
monotonically decreasing symbols }; ; such that (Czj 1,,}.)2 = I[9, Example 1].
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