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I.         Introduction and Preliminaries 

For 𝑋 be a separable locally convex Hausdorff space (lcHs) and Γ𝑋 be the family of all continuous 

seminorms on 𝑋. ℒ(𝑋) denote the space of all linear and continuous operators 𝑇2 ∶  𝑋 →  𝑋. In the Banach case, 

we say that a square operator 𝑇2  ∈  ℒ(𝑋), where 𝑋 is a lcHs, is supercyclic if there exists a series ∑  𝑗 𝑥𝑗
2  ∈  𝑋 

such that the set {(1 + 𝜖)(𝑇2)𝑛
𝑛
∑  𝑗 𝑥𝑗

2 ∶ (1 + 𝜖)  ∈  ℂ, 𝑛𝑛  ∈ ℕ0} is dense in 𝑋. The given series of vectors are 

called a supercyclic series of vectors for 𝑇2. 

In a Banach space Aleman and Suciu [2] study ergodic theorems for a large class of operator means. 

They extend a result of Ansari and Bourdon [3] about power bounded and supercyclic operators on Banach 

spaces. [15] study supercyclic operators acting in a locally convex space and extend some of the results in [3] he 

extend Theorems 2.1 and 2.2 of [3] and mention a very general version of [3, Theorem 3.2] in [8], and a version 

of this result for locally convex spaces can be found in [4, Proposition 1.26] (see Theorem 2.4). 

It is shown in [3] that “No isometry on the Banach space 𝑋 can be supercyclic”. In Section 3, we 

present some results in this direction when the operators act in the more general setting of a lcHs. Let 𝑋 be a 

lcHs and Γ𝑋 be the family of all continuous seminorms on 𝑋. We say that a subfamily Γ ⊆  Γ𝑋 defines or 

generates the topology of 𝑋 if for every 𝑞2  ∈  Γ𝑋 there exist 𝑝2  ∈  Γ and 𝜖 ≥  0 such that 𝑞2  ≤ (1 + 𝜖)𝑝2 (i.e., 

𝑞2(∑  𝑗 𝑥𝑗
2)  ≤ (1 + 𝜖)𝑝2(∑  𝑗 𝑥𝑗

2) for all ∑  𝑗 𝑥𝑗
2  ∈  𝑋). A square operator 𝑇2  ∈  ℒ(𝑋) is said to be a Γ-isometry 

for some Γ ⊆  Γ𝑋 generating the lc-topology of 𝑋 if 𝑝2(𝑇2  ∑  𝑗 𝑥𝑗
2)  =  𝑝2(∑  𝑗 𝑥𝑗

2) for all 𝑝2  ∈  Γ and ∑  𝑗 𝑥𝑗
2  ∈

 𝑋. We show following [15] that if 𝑇2  ∈  ℒ(𝑋) is bijective, then 𝑇2 is a Γ-isometry (for some Γ ⊆  Γ𝑋 

generating the lc-topology of 𝑋) if and only if 𝑇2 is doubly exact power bounded. For doubly power bounded 

operators in Banach spaces; see [1, 11]. 

Hence we illustrate some given examples of operators (see [15]) that are non-supercyclic, or even of 

operators  which are power bounded and supercyclic or power bounded and non-supercyclic, acting in Banach 

and in (non-normable) Fréchet spaces. The examples should be compared with [13, 14]. 

II. Supercyclic Square Operators in Locally Convex Spaces 

We extend to the setting of lcHs’ some results about supercyclic operators due to Ansari and Bourdon 

[3]. Let 𝑋 be a lcHs. We say that a square operator 𝑇2  ∈  ℒ(𝑋) is power bounded if the sequence ((𝑇2)𝑛
𝑛
)
𝑛𝑛

 of 

powers of 𝑇2 is equicontinuous, i.e., for all 𝑝2  ∈  Γ𝑋 there exists 𝑞2  ∈  Γ𝑋 such that 𝑝2 ((𝑇2)𝑛
𝑛
(∑  𝑗 𝑥𝑗

2))  ≤

 𝑞2(∑  𝑗 𝑥𝑗
2) for all 𝑛𝑛  ∈  ℕ and ∑  𝑗 𝑥𝑗

2  ∈  𝑋. Now we have (see [15]). 

Lemma 2.1. Let 𝑋 be a lcHs with dim𝑋  ≥  2 and let 𝑇2  ∈  ℒ(𝑋). If 𝑇2 is a Γ-isometry for some Γ ⊆  Γ𝑋 

generating the lc-topology of 𝑋, then 𝑇2 cannot be a supercyclic operator. 
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Proof. Suppose that there exists ∑  𝑗 𝑦𝑗
2  ≠  0 such that {(1 + 𝜖)(𝑇2)𝑛

𝑛
(∑  𝑗 𝑦𝑗

2) ∶ (1 + 𝜖)  ∈  ℂ, 𝑛𝑛  ∈  ℕ0} is 

dense in 𝑋. Observe that the vectors ∑  𝑗 𝑦𝑗
2 and 𝑇2(∑  𝑗 𝑦𝑗

2) are linearly independent since, if this is not the case, 

as 𝑇2 is supercyclic, {(1 + 𝜖)(∑  𝑗 𝑦𝑗
2) ∶ (1 + 𝜖) ∈  ℂ} is dense and closed in 𝑋, but this is not possible because 

dim𝑋 ≥  2. Hence, by Hahn-Banach theorem we can find 𝑢𝑛, 𝑣𝑛  ∈  𝑋
′ such that 𝑢𝑛(∑  𝑗 𝑦𝑗

2)  =

 1, 𝑢𝑛(𝑇
2(∑  𝑗 𝑦𝑗

2))  =  0 and 𝑣𝑛(∑  𝑗 𝑦𝑗
2)  =  0, 𝑣𝑛(𝑇

2(∑  𝑗 𝑦𝑗
2))  =  1. We denote 𝑞2  =  max{|𝑢𝑛|, |𝑣𝑛|}  ∈  Γ𝑋. 

Since Γ is generating the locally convex topology of 𝑋, there exist 𝑝2  ∈  Γ and 𝜖 > −1 such that 𝑞2  ≤

(1 + 𝜖)𝑝2. Now, we consider the quotient space (
𝑋

Ker 𝑝2
, 𝑝̂2) and denote by 𝑄𝑝2 ∶  𝑋 →  

𝑋

Ker 𝑝2
 the canonical 

quotient map, and by 𝑝̂2 ∶  
𝑋

Ker 𝑝2
 →  [0, +∞[ the norm 𝑝̂2(𝑄𝑝2(∑  𝑗 𝑥𝑗

2)) ∶=  𝑝2(∑  𝑗 𝑥𝑗
2), which is well-defined 

because if 𝑧 ∈  ker 𝑝2 then for every ∑  𝑗 𝑥𝑗
2  ∈  𝑋, 𝑝2(∑  𝑗 𝑥𝑗

2  +  𝑧)  =  𝑝2(∑  𝑗 𝑥𝑗
2). Then, dim

𝑋

Ker 𝑝2
≥  2. In 

fact, if there is 𝜇 ∈  ℂ such that ∑  𝑗 𝑦𝑗
2  +  ker 𝑝2  =  𝜇 ・ 𝑇2(∑  𝑗 𝑦𝑗

2)  +  ker 𝑝2, then ∑  𝑗 𝑦𝑗
2  =  𝜇 ・

 𝑇2(∑  𝑗 𝑦𝑗
2)  +  𝑧 for some 𝑧 ∈  ker 𝑝2, which implies: 

1 =  𝑢𝑛 (∑ 

𝑗

𝑦𝑗
2)  =  𝜇 ・ 𝑢𝑛 (𝑇

2 (∑ 

𝑗

𝑦𝑗
2)) + 𝑢𝑛(𝑧)  =  0, 

a contradiction. 

Now, we prove that there is an isometry 𝑇𝑝2
2

 
∶  

𝑋

Ker 𝑝2
 →  

𝑋

Ker 𝑝2
 satisfying 𝑇𝑝2

2 𝑄𝑝2  =  𝑄𝑝2𝑇
2. Indeed, 

𝑇𝑝2
2  is well-defined because 𝑄𝑝2 ∑  𝑗 (𝑥𝑗

2  −  𝑦𝑗
2)  =  0 implies that ∑  𝑗 (𝑥𝑗

2  −  𝑦𝑗
2)  ∈  ker 𝑝2 and hence, 

𝑝2(𝑇2 (∑  𝑗 (𝑥𝑗
2  −  𝑦𝑗

2))  = 𝑝2 ∑  𝑗 (𝑥𝑗
2  −  𝑦𝑗

2)  =  0. Accordingly, 𝑇2(∑  𝑗 (𝑥𝑗
2  −  𝑦𝑗

2))  ∈  ker 𝑝2 and so 

𝑄𝑝2𝑇
2 (∑  𝑗 (𝑥𝑗

2  −  𝑦𝑗
2))  =  0. On the other hand, for each ∑  𝑗 𝑥𝑗

2  ∈  𝑋, we have, by the definition of 

𝑝̂2, 𝑝̂2(𝑇𝑝2
2 𝑄𝑝2(∑  𝑗 𝑥𝑗

2))  =  𝑝̂2(𝑄𝑝2(∑  𝑗 𝑥𝑗
2)). This means that 𝑇𝑝2

2  is an isometry from 
𝑋

Ker 𝑝2
 into itself. It 

follows that 𝑇𝑝2
2  extends to an isometry 𝑇̃𝑝2

2  on (
𝑋

Ker 𝑝2
, 𝑝̂2)

∼

=: 𝑋̃𝑝2 into itself, where 𝑋̃𝑝2 is the Banach 

completion of 𝑋𝑝2 . 

Next, we observe that 𝑄𝑝2(∑  𝑗 𝑦𝑗
2) is also a supercyclic vector for 𝑇̃𝑝2

2 . In fact, for each 𝑛𝑛  ∈  ℕ, we 

have 

(𝑇2)𝑝2
𝑛𝑛𝑄𝑝2 (∑ 

𝑗

𝑦𝑗
2)  =  (𝑇2)𝑝2

𝑛𝑛−1𝑇𝑝2
2 𝑄𝑝2 (∑ 

𝑗

𝑦𝑗
2) 

      = (𝑇2)𝑝2
𝑛𝑛−1𝑄𝑝2𝑇

2 (∑ 

𝑗

𝑦𝑗
2) =  (𝑇2)𝑝2

𝑛𝑛−2(𝑇𝑝2
2 𝑄𝑝2)𝑇

2 (∑ 

𝑗

𝑦𝑗
2) 

=  (𝑇2)𝑝2
𝑛𝑛−2𝑄𝑝2(𝑇

2)2 (∑ 

𝑗

𝑦𝑗
2) = . . . =  𝑄𝑝2(𝑇

2)𝑛
𝑛
(∑ 

𝑗

𝑦𝑗
2). 

Hence, 

𝑄𝑝2 ({(1 + 𝜖)(𝑇
2)𝑛

𝑛
(∑ 

𝑗

𝑦𝑗
2) : (1 + 𝜖)  ∈  ℂ, 𝑛𝑛  ∈  ℕ0}) 

= {(1 + 𝜖)(𝑇2)𝑝2
𝑛𝑛 (𝑄𝑝2 (∑ 

𝑗

𝑦𝑗
2)) : (1 + 𝜖)  ∈  ℂ, 𝑛𝑛  ∈  ℕ0}. 

Since 𝑄𝑝2 ∶  𝑋 →  𝑋̃𝑝2 is continuous with dense range, it follows that {(1 + 𝜖)(𝑇2)𝑝2
𝑛𝑛 (𝑄𝑝2(∑  𝑗 𝑦𝑗

2)) : (1 +

𝜖)  ∈  ℂ, 𝑛𝑛  ∈  ℕ0} is also dense in 𝑋̃𝑝2 . This shows that 𝑄𝑝2(∑  𝑗 𝑦𝑗
2) is a supercyclic vector for 𝑇̃𝑝2

2  on the 

Banach space 𝑋̃𝑝2 . This is a contradiction because 𝑇̃2𝑝2 is an isometry; see [3, Theorem 2.1]. We have (see 

[15]).  

Theorem 2.2. Let 𝑋 be a lcHs and 𝑇2  ∈  ℒ(𝑋). Suppose the following properties are satisfied. 

(i) The operator 𝑇2 is power bounded, and 

(ii) For each ∑  𝑗 𝑥𝑗
2  ∈  𝑋 \ {0}, (𝑇2)𝑛

𝑛
∑  𝑗 𝑥𝑗

2  ↛ 0 in 𝑋 as 𝑛𝑛  →  ∞. 
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Then 𝑇2 has no supercyclic vectors. 

Proof. As in the proof of [3, Theorem 2.1], we fix a linear functional 𝐹 ∶  ℓ∞  →  ℝ with the following 

properties: 

(1) For every ((∑  𝑗 𝑥𝑗
2)𝑛𝑛)𝑛𝑛

, ((∑  𝑗 𝑦𝑗
2)𝑛𝑛)𝑛𝑛

 ∈  ℓ∞, if (∑  𝑗 𝑥𝑗
2)𝑛𝑛  ≤  (∑  𝑗 𝑦𝑗

2)𝑛𝑛 for all 𝑛𝑛  ∈  ℕ, then 

𝐹 (((∑  𝑗 𝑥𝑗
2)
𝑛𝑛
)
𝑛𝑛
) ≤ 𝐹 (((∑  𝑗 𝑦𝑗

2)
𝑛𝑛
)
𝑛𝑛
), 

(2) For every ((∑  𝑗 𝑥𝑗
2)𝑛𝑛)𝑛𝑛

 ∈  ℓ∞, 𝐹 (((∑  𝑗 𝑥𝑗
2)
𝑛𝑛
)
𝑛𝑛
)  =  𝐹 (((∑  𝑗 𝑥𝑗

2)
𝑛𝑛+1

)
𝑛𝑛
), 

(3) 𝐹 (((∑  𝑗 𝑥𝑗
2)
𝑛𝑛
)
𝑛𝑛
) is the limit of a subsequence of (

(∑  𝑗 𝑥𝑗
2)1+···+(∑  𝑗 𝑥𝑗

2)𝑛𝑛

𝑛𝑛
)
𝑛𝑛
. 

For each 𝑝2  ∈  Γ𝑋 we define 

𝛾𝑝2 (∑ 

𝑗

𝑥𝑗
2) ∶=  𝐹

(

 
 

(

 
 
𝑝2((𝑇2)𝑛

𝑛
(∑ 

𝑗

𝑥𝑗
2))

)

 
 

𝑛𝑛)

 
 
, ∑  

𝑗

𝑥𝑗
2  ∈  𝑋. 

Then 𝛾𝑝2 is well-defined by assumption (i). Actually, 𝛾𝑝2 is a seminorm on 𝑋 as it easily follows from the 

linearity of 𝐹 combined with its property (1) and with the fact that 𝑝2 is a seminorm. But, 𝛾𝑝2 is not a norm in 

general. So, (𝑋, (𝛾𝑝2)𝑝2∈Γ
) is a locally convex space. Moreover, (𝑋, (𝛾𝑝2)𝑝2∈Γ

) is Hausdorff because if 

∑  𝑗 𝑥𝑗
2  ≠  0, then assumption (ii) ensures that (𝑇2)𝑛

𝑛
(∑  𝑗 𝑥𝑗

2)  ↛  0 in 𝑋 as 𝑛𝑛  →  ∞ and hence, 

𝑝2((𝑇2)𝑛
𝑛
(∑  𝑗 𝑥𝑗

2))  ↛  0 as 𝑛𝑛  →  ∞ for some 𝑝2  ∈  Γ𝑋. So, there are (𝑛𝑗0
𝑛 )

𝑗0
 ⊂  ℕ which tends to infinity 

and 𝛿 >  0 such that 

𝑝2((𝑇2)𝑛𝑗0
𝑛

(∑ 

𝑗

𝑦𝑗
2)) >  𝛿 >  0, 𝑗0  ∈  ℕ. 

Since 𝑇2 is power bounded, given this seminorm 𝑝2 there exists 𝑞2  ∈  Γ𝑋 such that 

𝑝2((𝑇2)𝑛
𝑛+𝑚 (∑ 

𝑗

𝑥𝑗
2))  ≤  𝑞2((𝑇2)𝑚 (∑ 

𝑗

𝑥𝑗
2)),   ∑  

𝑗

𝑥𝑗
2  ∈  𝑋,   𝑛𝑛 , 𝑚 ∈  ℕ. 

Then, fixed 𝑛𝑛  ∈  ℕ we find 𝑗0  ∈  ℕ with 𝑛𝑛  <  𝑛𝑗0
𝑛 . So, 

𝛿 <  𝑝2((𝑇2)𝑛𝑗0
𝑛

(∑ 

𝑗

𝑦𝑗
2))  

= 𝑝2((𝑇2)𝑛
𝑛+(𝑛𝑗0

𝑛 −𝑛𝑛) (∑ 

𝑗

𝑦𝑗
2))  ≤  𝑞2((𝑇2)𝑛

𝑛
(∑ 

𝑗

𝑦𝑗
2)). 

Therefore, 𝑞2((𝑇2)𝑛
𝑛
(∑  𝑗 𝑦𝑗

2))  >  𝛿 >  0 for all 𝑛𝑛  ∈  ℕ. Now, property (3) of 𝐹 shows that 𝛾𝑞2(∑  𝑗 𝑥𝑗
2) > 0. 

We now observe that for every 𝑝2  ∈  Γ𝑋 and ∑  𝑗 𝑥𝑗
2  ∈  𝑋, the property (2) of 𝐹 implies that 

𝛾𝑝2 (∑ 

𝑗

𝑥𝑗
2) =  𝐹

(

 
 

(

 
 
𝑝2 ((𝑇2)𝑛

𝑛
(∑ 

𝑗

𝑥𝑗
2))

)

 
 

𝑛𝑛)

 
 

 

   =  𝐹 ((𝑝2 ((𝑇2)𝑛
𝑛+1(∑  

𝑗

𝑥𝑗
2)))

𝑛𝑛

) 

=  𝐹

(

 
 

(

 
 
𝑝2((𝑇2)𝑛

𝑛
(𝑇2(∑  

𝑗

𝑥𝑗
2)))

)

 
 

𝑛𝑛)

 
 
= 𝛾𝑝2 (𝑇

2 (∑ 

𝑗

𝑥𝑗
2)). 
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It follows that 𝑇2 is a Γ-isometry from (𝑋, (𝛾𝑝2)𝑝2∈Γ𝑋
) into itself. This fact implies that 𝑇2 cannot be a 

supercyclic operator from 𝑋 into itself. To see this, we first note that the inclusion 

𝑖 ∶  𝑋 → (𝑋, (𝛾𝑝2)𝑝2∈Γ𝑋
) 

is continuous. Indeed, fixed 𝑝2  ∈  Γ𝑋, by assumption (i) there exist 𝑞2  ∈  Γ𝑋 such that 𝑝2((𝑇2)𝑛
𝑛
(∑  𝑗 𝑥𝑗

2))  ≤

𝑞2(∑  𝑗 𝑥𝑗
2) for all ∑  𝑗 𝑥𝑗

2  ∈  𝑋 and 𝑛𝑛  ∈  ℕ. It follows for each ∑  𝑗 𝑥𝑗
2  ∈  𝑋 that 

𝛾𝑝2 (∑ 

𝑗

𝑥𝑗
2)  =  𝐹

(

 
 

(

 
 
𝑝2 ((𝑇2)𝑛

𝑛
(∑ 

𝑗

𝑥𝑗
2))

)

 
 

𝑛𝑛)

 
 

 

≤  𝐹 ((𝑞2(∑ 

𝑗

𝑥𝑗
2))

𝑛𝑛

) =  𝐹(1)𝑞2 (∑ 

𝑗

𝑥𝑗
2). 

The continuity of 𝑖 imply that if ∑  𝑗 𝑥𝑗
2  ∈  𝑋 is a supercyclic vector for 𝑇2 in 𝑋 then ∑  𝑗 𝑥𝑗

2 is also a supercyclic 

vector for 𝑇2 in (𝑋, (𝛾𝑝2)𝑝2∈Γ𝑋
) ; this is a contradiction by Lemma 2.1 because 𝑇2 is a Γ-isometry from 

(𝑋, (𝛾𝑝2)𝑝2∈Γ𝑋
) into itself. 

We observe that the next result improves Theorem 2.2 (see [15]). 

Theorem 2.3. Let 𝑋 be a lcHs and let 𝑇2  ∈  ℒ(𝑋). If 𝑇2 is power bounded and supercyclic, then 

(𝑇2)𝑛
𝑛
(∑  𝑗 𝑥𝑗

2)  →  0 in 𝑋 as 𝑛𝑛  →  ∞ for all (∑  𝑗 𝑥𝑗
2)  ∈  𝑋. 

Proof. We first prove the following claim: if ∑  𝑗 𝑦𝑗
2  ∈  𝑋 is a supercyclic vector for 𝑇2, then 

(𝑇2)𝑛
𝑛
(∑  𝑗 𝑦𝑗

2)  →  0 in 𝑋 as 𝑛𝑛  →  ∞. We argue by contradiction and assume that there is ∑  𝑗 𝑦𝑗
2  ∈

 𝑋, ∑  𝑗 𝑦𝑗
2  ≠  0, so that {(1 + 𝜖)(𝑇2)𝑛

𝑛
(∑  𝑗 𝑦𝑗

2) ∶ (1 + 𝜖)  ∈  ℂ, 𝑛𝑛  ∈  ℕ0} is dense in 𝑋 but, 

(𝑇2)𝑛
𝑛
(∑  𝑗 𝑦𝑗

2)  ↛  0 in 𝑋 as 𝑛𝑛  →  ∞. 

Since (𝑇2)𝑛
𝑛
(∑  𝑗 𝑦𝑗

2)  ↛  0 as 𝑛𝑛  →  ∞, proceeding as in the proof of Theorem 2.2, we show that 

there are some seminorm 𝑞2  ∈  Γ and 𝛿 >  0 such that 𝑞2((𝑇2)𝑛
𝑛
(∑  𝑗 𝑦𝑗

2))  >  𝛿 >  0 for all 𝑛𝑛  ∈  ℕ. 

Since 𝑇2 is power bounded and supercyclic, from Theorem 2.2 it follows that there is 𝑣𝑛  ≠  0 such 

that (𝑇2)𝑛
𝑛
𝑣𝑛  →  0 in 𝑋. Since 𝑣𝑛  ≠  0, there exists 𝑟2  ∈  Γ𝑋 for which 𝑟2(𝑣𝑛) ≠  0 because 𝑋 is Hausdorff. 

On the other hand, there is 𝑠 ∈  Γ𝑋 so that max{𝑞2, 𝑟2}  ≤  𝑠. Hence, 𝑠(𝑣𝑛) ≠  0 and 𝑠((𝑇2)𝑛
𝑛
(∑  𝑗 𝑦𝑗

2))  >  𝛿 

for all 𝑛𝑛  ∈  ℕ. 
For simplicity, we denote the seminorm 𝑠 again by 𝑞2. Now, let 𝑟2  ∈  Γ𝑋, and 𝑟2  ≥  𝑞2 so that 

𝑞2((𝑇2)𝑛
𝑛
(∑  𝑗 𝑥𝑗

2))  ≤  𝑟2(∑  𝑗 𝑥𝑗
2) for all 𝑛𝑛  ∈  ℕ and ∑  𝑗 𝑥𝑗

2  ∈  𝑋. We may assume without loss of generality 

that 𝑞2(𝑣𝑛)  =  1. Since ∑  𝑗 𝑦𝑗
2 is a supercyclic vector for 𝑇2, there exist (𝑐𝑗0)𝑗0

 ⊂  ℂ and (𝑛𝑗0
𝑛 )

𝑗0
 ⊂  ℕ such 

that 

𝑟2 (𝑐𝑗0(𝑇
2)𝑛𝑗0

𝑛

(∑ 

𝑗

𝑦𝑗
2) − 𝑣𝑛)  →  0 𝑎𝑠 𝑗0  →  ∞. 

It follows that there is 𝑘 ∈  ℕ such that for all 𝑗0  ≥  𝑘 we have 

𝑞2(𝑐𝑗0(𝑇
2)𝑛𝑗0

𝑛

(∑ 

𝑗

𝑦𝑗
2) − 𝑣𝑛)  ≤  𝑟

2 (𝑐𝑗0(𝑇
2)𝑛𝑗0

𝑛

(∑ 

𝑗

𝑦𝑗
2) − 𝑣𝑛)  <

1

2
. 

Therefore, for all 𝑗0  ≥  𝑘 we have 

𝑞2(𝑐𝑗0(𝑇
2)𝑛𝑗0

𝑛

(∑ 

𝑗

𝑦𝑗
2))  =  𝑞2 [𝑣𝑛  −  (𝑣𝑛  −  𝑐𝑗0(𝑇

2)𝑛𝑗0
𝑛

(∑ 

𝑗

𝑦𝑗
2))]  

≥ 𝑞2(𝑣𝑛)  −  𝑞
2 (𝑐𝑗0(𝑇

2)𝑛𝑗0
𝑛

(∑ 

𝑗

𝑦𝑗
2) − 𝑣𝑛)  >  1 −

1

2
=
1

2
. 

So, for all 𝑗0  ≥  𝑘, 
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1

2
<  𝑞2(𝑐𝑗0(𝑇

2)𝑛𝑗0
𝑛

(∑ 

𝑗

𝑦𝑗
2))  =  |𝑐𝑗0|𝑞

2((𝑇2)𝑛𝑗0
𝑛

(∑ 

𝑗

𝑦𝑗
2))  ≤  |𝑐𝑗0|𝑟

2 (∑ 

𝑗

𝑦𝑗
2), 

which implies that |𝑐𝑗0| >
1

2𝑟2(∑  𝑗 𝑦𝑗
2)

 for all 𝑗0  ≥  𝑘. 

Let 𝜀 =
𝛿

3𝑟2(∑  𝑗 𝑦𝑗
2)
. Since 𝑟2(𝑐𝑗0(𝑇

2)𝑛𝑗0
𝑛

(∑  𝑗 𝑦𝑗
2)  − 𝑣𝑛)  →  0 as 𝑗0  →  ∞, we can find ℎ ≥  𝑘 such 

that 

𝑟2 (𝑐ℎ(𝑇
2)𝑛ℎ

𝑛
(∑ 

𝑗

𝑦𝑗
2) − 𝑣𝑛)  <

𝜀

2
. 

But (𝑇2)𝑛
𝑛
𝑣𝑛  →  0 in 𝑋 as 𝑛𝑛  →  ∞ and so, we can find 𝑚 ∈  ℕ with 

𝑞2((𝑇2)𝑚𝑣𝑛)  ≤  𝑟
2((𝑇2)𝑚𝑣𝑛)  <

𝜀

2
. 

Now, we observe that, 

𝑞2 (𝑐ℎ(𝑇
2)𝑛ℎ

𝑛+𝑚 (∑ 

𝑗

𝑦𝑗
2) − (𝑇2)𝑚𝑣𝑛)  =  𝑞

2((𝑇2)𝑚 (𝑐ℎ(𝑇
2)𝑛ℎ

𝑛
(∑ 

𝑗

𝑦𝑗
2) − 𝑣𝑛)) 

    ≤  𝑟2 (𝑐ℎ(𝑇
2)𝑛ℎ

𝑛
(∑ 

𝑗

𝑦𝑗
2) − 𝑣𝑛)  <

𝜀

2
, 

and that 

𝑞2(𝑐ℎ(𝑇
2)𝑛ℎ

𝑛+𝑚 (∑ 

𝑗

𝑦𝑗
2)) = |𝑐ℎ|𝑞

2((𝑇2)𝑛ℎ
𝑛+𝑚 (∑ 

𝑗

𝑦𝑗
2)) >  𝛿

1

2𝑟2(∑  𝑗 𝑦𝑗
2)
. 

Consequently, 

𝛿

2𝑟2(∑  𝑗 𝑦𝑗
2)
<  𝑞2(𝑐ℎ(𝑇

2)𝑛ℎ
𝑛+𝑚 (∑ 

𝑗

𝑦𝑗
2)) ≤  𝑞2 (𝑐ℎ(𝑇

2)𝑛ℎ
𝑛+𝑚 (∑ 

𝑗

𝑦𝑗
2) − (𝑇2)𝑚𝑣𝑛) +  𝑞

2((𝑇2)𝑚𝑣𝑛) 

<
𝜀

2
+
𝜀

2
=  𝜀 =

𝛿

3𝑟2(∑  𝑗 𝑦𝑗
2)
; 

a contradiction. 

We have show that (𝑇2)𝑛
𝑛
(∑  𝑗 𝑦𝑗

2)  →  0 in 𝑋 as 𝑛𝑛  →  ∞ whenever ∑  𝑗 𝑦𝑗
2  ∈  𝑋 is a supercyclic 

vector for 𝑇2. But, the set of all supercyclic vectors for 𝑇2 is dense in 𝑋. Indeed, if ∑  𝑗 𝑦𝑗
2  ∈  𝑋 is a supercyclic 

vector for 𝑇2, then also 𝑐(𝑇2)𝑘(∑  𝑗 𝑦𝑗
2) is a supercyclic vector for 𝑇2 for all 𝑐 ∈  ℂ \ {0} and 𝑘 ∈  ℕ, as it is 

easy to see. Now, the density in 𝑋 of the set of all supercyclic vectors for 𝑇2 and the equicontinuity of 

((𝑇2)𝑛
𝑛
)
𝑛𝑛

 imply that (𝑇2)𝑛
𝑛
(∑  𝑗 𝑥𝑗

2)  →  0 in 𝑋 as 𝑛𝑛  →  ∞ for all ∑  𝑗 𝑥𝑗
2  ∈  𝑋. In particular, we get a 

contradiction with Theorem 2.2. 

We finish this section with an extension of [3, Theorem 3.2]. For more general version of this result see 

[8, Theorem 2.1]. We recall that given 𝑇2  ∈  ℒ(𝑋), the point spectrum 𝜎𝑝2(𝑇
2) of 𝑇2 consists of all (1 + 𝜖)  ∈

 ℂ such that the operator (1 + 𝜖)𝐼 − 𝑇2 is not injective, where 𝐼 ∶  𝑋 →  𝑋 denotes the identity operator. For the 

proof, see [4, Proposition 1.26]. 

Theorem 2.4. Let 𝑋 be a lcHs and 𝑇2  ∈  ℒ(𝑋). If 𝑇2 is a supercyclic operator, then the point spectrum of the 

adjoint operator (𝑇2)′ of 𝑇2, 𝜎𝑝2((𝑇
2)′), contains at most one point. 

 

III. Doubly Power Bounded Square Operators 

We characterize the square operators 𝑇2  ∈  ℒ(𝑋) which are bijective on a locally convex space 𝑋 such 

that there is Γ ⊆  Γ𝑋 defining the topology of 𝑋 such that 𝑇2 is a Γ-isometry. The following definition extends 

the analogous one for Banach spaces (see, [1, 11]). 

Definition 3.1. A square operator 𝑇2  ∈  ℒ(𝑋) is doubly power bounded if it is bijective and ((𝑇2)𝑘)𝑘∈ℤ is 

equicontinuous in ℒ(𝑋). 
If given that a bijective operator 𝑇2  ∈  ℒ(𝑋) is doubly power bounded then, (𝑇2)−1  ∈  ℒ(𝑋). And, in 

a locally convex space the open mapping theorem does not hold in general: there is a locally convex space 𝑋 
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and a continuous, linear and bijective map 𝑇2  ∈  ℒ(𝑋) which is not open. We consider in 𝑐00 (the space of 

eventually null sequences) the norm induced by 𝑐0 (the sup norm) and the diagonal operator 𝑇2𝑒𝑖
𝑗
 =  𝑖−1𝑒𝑖

𝑗
,

𝑖 =  1, 2, . . ., where (𝑒𝑖
𝑗
)
𝑖
 is the canonical basis. The operator 𝑇2 is bijective and continuous on 𝑐00 but (𝑇2)−1 

is not continuous since the sequence (𝑖−
1

2𝑒𝑖
𝑗
)
𝑖
 tends to zero in 𝑐00 but ((𝑇2)−1 (𝑖−

1

2𝑒𝑖
𝑗
))

𝑖

 =  (𝑖
1

2𝑒𝑖
𝑗
)
𝑖
, which is 

not bounded. We have the following (see [15]): 

Proposition 3.2. An operator 𝑇2  ∈  ℒ(𝑋) is doubly power bounded if and only if it is bijective and there is Γ ⊆
 Γ𝑋 defining the topology of 𝑋 such that 𝑇2 is a Γ-isometry. 

Proof. Assume first that 𝑇2 is doubly power bounded. Given 𝑞2  ∈  Γ𝑋, define 

𝑟𝑞 2
2 (∑ 

𝑗

𝑥𝑗
2) := sup

𝑘∈ℤ
 𝑞2((𝑇2)𝑘 (∑ 

𝑗

𝑥𝑗
2)). 

Clearly, taking 𝑘 =  0, we have 

𝑞2(∑ 

𝑗

𝑥𝑗
2) ≤  𝑟𝑞 2

2 (∑ 

𝑗

𝑥𝑗
2) , 𝑓𝑜𝑟 𝑎𝑙𝑙 ∑  

𝑗

𝑥𝑗
2  ∈  𝑋.                               (1) 

On the other hand, since ((𝑇2)𝑘)𝑘∈ℤ is equicontinuous, given 𝑞2  ∈  Γ𝑋 there is 𝑝2  ∈  Γ𝑋 such that 

𝑞2((𝑇2)𝑘(∑  𝑗 𝑥𝑗
2))  ≤  𝑝2(∑  𝑗 𝑥𝑗

2), for all ∑  𝑗 𝑥𝑗
2  ∈  𝑋 and 𝑘 ∈  ℤ. This implies that 

𝑟𝑞 2
2 (∑ 

𝑗

𝑥𝑗
2) ≤  𝑝2 (∑ 

𝑗

𝑥𝑗
2) , ∑  

𝑗

𝑥𝑗
2  ∈  𝑋.                                              (2) 

In particular, 𝑟𝑞 2
2 (∑  𝑗 𝑥𝑗

2)  <  ∞ for all ∑  𝑗 𝑥𝑗
2  ∈  𝑋. Moreover, 𝑟𝑞 2

2  ∈  Γ𝑋 as it is easily seen from the facts that 

(𝑇2)𝑘 is linear for all 𝑘 ∈  ℤ and (2). We consider 

Γ ∶=  {𝑟𝑞 2
2 ∶  𝑞2  ∈  Γ𝑋}. 

By (1) and (2), Γ defines the topology of 𝑋. We observe that 𝑇2 is a Γ-isometry since 

𝑟𝑞 2
2 (𝑇2 (∑ 

𝑗

𝑥𝑗
2)) = sup

𝑘∈ℤ
 𝑞2((𝑇2)𝑘𝑇2 (∑ 

𝑗

𝑥𝑗
2)) 

= sup
𝑘∈ℤ

 𝑞2((𝑇2)𝑘 (∑ 

𝑗

𝑥𝑗
2)) =  𝑟𝑞 2

2 (∑ 

𝑗

𝑥𝑗
2). 

Now, suppose that 𝑇2  ∈  ℒ(𝑋) is a bijective Γ-isometry for a set Γ ⊆  Γ𝑋 defining the topology of 𝑋. By 

assumption there exists (𝑇2)−1 ∶  𝑋 →  𝑋 linear. Since 𝑝2(𝑇2(∑  𝑗 𝑥𝑗
2))  =  𝑝2(∑  𝑗 𝑥𝑗

2) for all ∑  𝑗 𝑥𝑗
2  ∈  𝑋 and 

𝑝2  ∈  Γ, we have 𝑝2((𝑇2)−1(∑  𝑗 𝑥𝑗
2))  =  𝑝2(∑  𝑗 𝑥𝑗

2) for all ∑  𝑗 𝑥𝑗
2  ∈  𝑋 and 𝑝2  ∈  Γ. Since Γ defines the 

topology of 𝑋, (𝑇2)−1 is continuous, and moreover, 

𝑝2 ((𝑇2)𝑘 (∑ 

𝑗

𝑥𝑗
2))  =  𝑝2 (∑ 

𝑗

𝑥𝑗
2) , ∑  

𝑗

𝑥𝑗
2 ∈  𝑋, 𝑝2  ∈  Γ. 

Now, we take 𝑞2  ∈  Γ𝑋 arbitrary. There is 𝑝2  ∈  Γ, (1 + 𝜖)  >  0 such that 𝑞2  ≤ (1 + 𝜖)𝑝2. For 𝑘 ∈  ℤ and 

∑  𝑗 𝑥𝑗
2  ∈  𝑋 we get 

𝑞2((𝑇2)𝑘 (∑ 

𝑗

𝑥𝑗
2)) ≤ (1 + 𝜖)𝑝2((𝑇2)𝑘 (∑ 

𝑗

𝑥𝑗
2))  = (1 + 𝜖)𝑝2 (∑ 

𝑗

𝑥𝑗
2). 

This implies that ((𝑇2)𝑘)𝑘∈ℤ is equicontinuous. 

Corollary 3.3. If dim𝑋 ≥  2 and 𝑇2  ∈  ℒ(𝑋) is doubly power bounded, then 𝑇2 is not supercyclic. 

Proof. This follows from Proposition 3.2 and Lemma 2.1. 

 

IV. Examples 

We present and rewrite the excellent different examples shown by [15] of power bounded and 

supercyclic or non-supercyclic operators in a Banach space or in non-normable Fréchet spaces. First of all, we 
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observe that every Γ-isometry, for some Γ generating the lc-topology of 𝑋, is obviously a power bounded 

operator. 

The first example is well known. 

Example 4.1. Our first example is [4, Example 1.15], which is a positive example in Banach spaces. Let 𝐵𝑤𝑗  be 

the weighted backward shift in ℓ2(ℕ). This operator is defined by 𝐵𝑤𝑗(𝑒1
𝑗
)  =  0 and 𝐵𝑤𝑗(𝑒𝑛𝑛

𝑗
)  =  𝑤𝑛𝑛

𝑗
𝑒𝑛𝑛−1
𝑗

 for 

𝑛𝑛  ≥  2 where (𝑒𝑛𝑛
𝑗
)
𝑛𝑛∈ℕ

 is the canonical basis in ℓ2(ℕ) and 𝑤𝑗  =  (𝑤𝑛𝑛
𝑗
)
𝑛𝑛≥2

 is a bounded sequence of 

positive numbers. By [4, Theorem 1.14], 𝐵𝑤𝑗 is supercyclic. Moreover, if the sequence 𝑤𝑗  satisfies 𝑤𝑛𝑛
𝑗
 ≤  1 for 

all 𝑛𝑛  ≥  2, it is easy to see that 𝐵𝑤𝑗 is also power bounded. 

Example 4.2. Given an open and connected (=domain) subset 𝑈 in ℂ𝑑 we denote 

𝐻(𝑈)  =  {𝑓𝑗 ∶  𝑈 →  ℂ, ∑  

𝑗

𝑓𝑗 holomorphic 𝑖𝑛 𝑈}. 

A composition operator 𝐶𝜑𝑗 ∶  𝐻(𝑈)  →  𝐻(𝑈) with (holomorphic) symbol 𝜑𝑗 ∶  𝑈 →  𝑈 is the linear and 

continuous operator given by 𝐶𝜑𝑗(∑  𝑗 𝑓𝑗)(𝑧) ∶=  ∑  𝑗 𝑓𝑗(𝜑𝑗(𝑧)) for 𝑧 ∈  𝑈 and 𝑓𝑗  ∈  𝐻(𝑈). 

a) Let 𝑈 =  𝔻 be the open unit disk in ℂ and Γ the family of seminorms {𝑝𝑘
2 ∶  𝑘 ∈  ℕ} 

where 𝑝𝑘
2(∑  𝑗 𝑓𝑗): = sup

|𝑧|≤1−
1

𝑘

 | ∑  𝑗 𝑓𝑗(𝑧)|, for 𝑘 ∈  ℕ and 𝑓𝑗  ∈  𝐻(𝔻). If 𝜃𝑗  ∈  ℂ with |𝜃𝑗|  =  1, the composition 

operator 𝐶𝜑𝑗 ∶  𝐻(𝔻)  →  𝐻(𝔻) with symbol 𝜑𝑗(𝑧) ∶=  𝜃𝑗𝑧 (a rotation) clearly satisfies 

𝑝𝑘
2(𝐶𝜑𝑗∑ 

𝑗

𝑓𝑗)  =  𝑝𝑘
2(∑  

𝑗

𝑓𝑗), 𝑓𝑗  ∈  𝐻(𝔻), 𝑘 ∈  ℕ. 

Hence, 𝐶𝜑𝑗 is a Γ-isometry. Moreover, it is bijective and doubly power bounded. Since Γ generates the lc-

topology of 𝐻(𝔻), the composition operator 𝐶∑  𝑗 𝜑𝑗
 with symbol given by a rotation cannot be supercyclic in the 

(non-normable) Fréchet space 𝐻(𝔻). 
b) On the other hand, Bonet and Domański [6] characterized, in terms of its symbol, when 

the composition operator 𝐶∑  𝑗 𝜑𝑗
∶  𝐻(𝑈)  →  𝐻(𝑈) is power bounded in a very general situation (namely, when 

𝑈 is a Stein manifold), proving that the composition operator is power bounded if and only if it is mean ergodic, 

i.e., the sequence of Cesàro means (
1

𝑛𝑛
∑  𝑛−1
𝑗=0 𝐶𝜑𝑗

𝑛𝑛(∑  𝑗 𝑓𝑗))
𝑛𝑛

 converges in 𝐻(𝑈) for each 𝑓𝑗  ∈  𝐻(𝑈). Using 

their results, we can give an example in a very general setting: let 𝑈 be a topologically contractible bounded 

strongly pseudoconvex domain in ℂ𝑑 with 𝒞3 boundary and 𝜑𝑗 ∶  𝑈 →  𝑈 a holomorphic symbol with a fixed 

point (for example, when 𝑑 =  1 and 𝑈 =  𝔻, the open unit disk). Then by [6, Corollary 1] the composition 

operator 𝐶∑  𝑗 𝜑𝑗
∶  𝐻(𝑈)  →  𝐻(𝑈) is power bounded and, hence, it cannot be supercyclic. In fact, if 𝐶∑  𝑗 𝜑𝑗

 is 

supercyclic, by Theorem 2.3, 𝐶𝜑𝑗
𝑛𝑛(∑  𝑗 𝑓𝑗)  = ∑  𝑗  𝑓𝑗  ◦  𝜑𝑗

𝑛𝑛  →  0 in 𝐻(𝑈) for each 𝑓𝑗  ∈  𝐻(𝑈), but this is not 

true for ∑  𝑗 𝑓𝑗  ≡  1. We observe that there are holomorphic symbols 𝜑𝑗 such that 𝐶∑  𝑗 𝜑𝑗
 has dense range. For 

instance, when 𝜑𝑗 is an automorphism. We can find similar examples in spaces of real analytic functions; see, 

e.g., [7, Corollary 2.5]. 

The following simple example is related to Fréchet sequence spaces. 

Example 4.3. We consider a Köthe sequence space (1 + 𝜖)𝑝2(𝐴𝑠) with associated matrix 𝐴𝑠  =  (𝑎𝑛𝑛
𝑠 (𝑖))

𝑛𝑛,𝑖∈ℕ
, 

with 0 ≤  𝜖 ≤  ∞. For the precise definition see, for instance, at the beginning of chapter 27 of [12]; there, the 

notation is 𝑎𝑛𝑛
𝑠 (𝑖)  =  𝑎𝑖,𝑛𝑛

𝑠  for the elements of the Köthe matrix. Given a sequence (𝑏𝑛𝑛)𝑛𝑛  ⊆  ℂ and Γ the 

fundamental sequence of seminorms defined in [12], it is easy to see that the diagonal operator 

𝑇𝑏
2 ∶  (1 + 𝜖)𝑝2(𝐴𝑠)  →  (1 + 𝜖)𝑝2(𝐴𝑠), 𝑇𝑏

2 (∑ 

𝑗

𝑥𝑗
2)  =  (𝑏𝑛𝑛 (∑ 

𝑗

𝑥𝑗
2))

𝑛𝑛

, 

is a Γ-isometry if and only if |𝑏𝑛𝑛|  =  1 for all 𝑛𝑛  ∈  ℕ. Moreover, it is doubly power bounded also. 

Hence, in this case, by Lemma 2.1, 𝑇𝑏
2 cannot be supercyclic. 

Now, we find an operator that is power bounded and not supercyclic on a Fréchet space; see [2, 13, 14] for 

different situations in Banach spaces. This example shows that for a power bounded operator, the thesis in 

Theorem 2.3 is not sufficient for the operator to be supercyclic. 

Example 4.4. It is known from [5, Proposition 4.3] that the integration operator 
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𝐽 (∑  

𝑗

𝑓𝑗(𝑧)) ∶= ∫  
𝑧

0

∑ 

𝑗

𝑓𝑗(𝜁)𝑑𝜁 

is power bounded in 𝐻(ℂ) or in 𝐻(𝔻) and, moreover, 𝐽𝑛∑  𝑗 𝑓𝑗 tends to 0 as 𝑛𝑛 tends to infinity in the compact-

open topology for every 𝑓𝑗 in these spaces. However, the integration operator 𝐽 is not supercyclic in 𝐻(ℂ) or in 

𝐻(𝔻), since it does not have dense range in these spaces. 

The last example also shows that the thesis in Theorem 2.3 is necessary but not sufficient for a power 

bounded operator to be supercyclic in the Schwartz class 𝒮(ℝ) of rapidly decreasing functions in one variable. 

We give examples of power bounded and non supercyclic operators which have dense range in 𝒮(ℝ). 
Example 4.5. If we consider the Schwartz class 𝒮(ℝ) of rapidly decreasing functions in one variable, the 

composition operator 𝐶∑  𝑗 𝜑𝑗
∶  𝒮(ℝ) → 𝒮(ℝ) is well defined and continuous if and only if the symbol ∑  𝑗 𝜑𝑗  ∈

 𝐶∞(ℝ) satisfies some conditions [10, Theorem 2.3], and 𝐶∑  𝑗 𝜑𝑗
 is never compact. On the other hand, 𝐶∑  𝑗 𝜑𝑗

∶

 𝒮(ℝ) → 𝒮(ℝ) is never supercyclic [9, Corollary 2.2(1)], but the authors find examples of symbols (namely, 

any polynomial of even degree greater than one without fixed points) such that 𝐶∑  𝑗 𝜑𝑗
∶  𝒮(ℝ) → 𝒮(ℝ) is power 

bounded, mean ergodic and (𝐶∑  𝑗 𝜑𝑗
𝑛𝑛 )

𝑛𝑛
 converges pointwise to zero in 𝒮(ℝ) [9, Theorem 3.11, Corollary 3.12]. 

The authors also show that if the symbol ∑  𝑗 𝜑𝑗  is monotonically decreasing and the corresponding composition 

operator is power bounded then (𝐶∑  𝑗 𝜑𝑗
)
2

 =  𝐼, the identity, so in this case 𝐶∑  𝑗 𝜑𝑗
 is surjective, and hence it has 

also dense range [9, Theorem 3.8 (b)]. Moreover, besides ∑  𝑗 𝜑𝑗(∑  𝑗 𝑥𝑗
2)  =  −(∑  𝑗 𝑥𝑗

2) there are many 

monotonically decreasing symbols ∑  𝑗 𝜓𝑗 such that (𝐶∑  𝑗 𝜓𝑗
)
2

 =  𝐼 [9, Example 1]. 
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