Some New Prime Graphs

S.MEENA, J.NAVEEN

Associate Professor of Mathematics Government Arts College, C.Mutlur, Chidambaram, Tamil Nadu, India E-mail: meenasaravanan14@gmail.com

Assistant Professor of Mathematics Government Arts College, C.Mutlur, Chidambaram, Tamil Nadu, India E-mail: naveenj.maths@gmail.com

ABSTRACT: A Graph G with n vertices is said to admit prime labeling if its vertices can be labeled with distinct positive integers not exceeding n such that the labels of each pair of adjacent vertices are relatively prime. A graph G which admits prime labeling is called a prime graph. In this paper we investigate the existence of prime labeling of some graphs related to cycle C_n , wheel W_n , crown C_n^* , Helm H_n and Gear graph G_n , Stars $_n$, Friendship graph T_n , prism D_n and Butterfly graph $B_{n,m}$. We discuss prime labeling in the context of the graph operation namely duplication.

Keywords: Graph Labeling, Prime Labeling, Duplication, Prime Graph.

I. INTRODUCTION

We begin with simple, finite, connected and undirected graph G (V,E) with p vertices and q edges. The set of vertices adjacent to a vertex u of G is denoted by N(u). For notations and terminology we refer to Bondy and Murthy[1].

The notion of prime labeling was introduced by Roger Entringer and was discussed in a paper by Tout[6]. Two integers a and b are said to be relatively prime if their greatest common divisor is 1. Relatively prime numbers play an important role in both analytic and algebraic number theory. Many researchers have studied prime graph. Fu. H [3] has proved that the path P_n onn vertices is a prime graph. Deretsky el al [2] haveprove that the cycle C_n on n vertices is a prime graph. Around 1980 rugerEtringer conjectured that all trees have prime labeling which is not settled till today.

The prime labeling for planer grid is investigated by Sundaram et al [5], Lee.S.al [4] has proved that the Wheel W_n is a prime graph if and only if n is even.

Definition 1.1[7] Duplication of a vertex v_k by a new edge $e = v_k' v_k''$ in a graph G produces a new graph G' such that $N(v_k') \cap N(v_k'') = v_k$

Definition 1.2 The graph obtained by duplicating all the vertices by edges of a graph G is called duplication of G

Definition 1.3 The crown graph C_n^* is obtained from a cycle C_n by attaching a pendent edge at each vertex of the n-cycle.

Definition 1.4 The $Helm H_n$ is a graph obtained from a Wheel by attaching a pendent edge at each vertex of the n-cycle.

Definition 1.5The gear graph G_n is, the graph obtained from wheel $W_n = C_n + K_1$ by subdividing each edge incident with the apex vertex once.

Definition 1.6The Friendship graph T_n is set of n triangles having a common central vertex.

Definition 1.7The Prism D_n is a Graph obtained from the cycleC_n(= $v_1, v_2, ..., v_n$) by attaching n-3 chords $v_1v_3, v_1v_4, ..., v_1v_{n-2}$.

Definition 1.8 The Butterfly Graph $B_{n,m}$ is,the Graph obtained from two copies of C_n having one vertex in common, and by attaching m pendent edges to the common vertex of two cycles.

In this paper we proved that the graphs obtained by duplication of all the alternate vertices by edges in C_n and wheel W_n if n is even, duplicatingall the rim vertices by edges in crown C_n^* , Helm H_n and Gear graph G_n , duplicating all the alternate vertices by edges in star $S_n = K_{1,n}$ and Friendship graph T_n and prism D_n , duplicating all the vertices of C_n by edges in Butterfly graph $B_{n,m}$, $m \ge 2n-2$ are all prime graphs.

II. MAIN RESULTS

Theorem 2.1

The graph obtained by duplicating all the alternate vertices by edges in C_n is a prime graph, if n is even.

```
Proof.
```

```
Let V(C_n) = \{u_i / 1 \le i \le n\}
    E(C_n) = \{u_i u_{i+1} / 1 \le i \le n\} \ v \ \{u_n u_1\}
Let G be the graph obtained by duplicatingall the alternate vertices by edges in C_n and let the new edges
be u_1'u_1'', u_3'u_3'', \dots, u_{n-1}'u_{n-1}'' by duplicating the alternate vertices u_1, u_3, \dots, u_{n-1} respectively,
Then V(G) = \{ u_i / 1 \le i \le n \} \cup \{ u'_i, u''_i / 1 \le i \le n, i \text{ is odd} \}
                   E(G) = \{u_i \, u_{i+1} \, / \, 1 \le i \le n, i \text{ is odd}\}
E(G) = \{u_i \, u_{i+1} \, / \, 1 \le i \le n - 1\} \cup \{u_i u_i', u_i u_i', u_i' u_i'' \, / \, 1 \le i \le n, i \text{ is odd}\}
                    |E(G)| = 5n/2
|V(G)|=2n
Define a labeling f: V(G) \to \{1,2,3,...,2n\} as follows.
Let f(u_1) = 1
                                        f(u_i) = 2i if i is even, 2 \le i \le n,
                    f(u_i) = 2i - 1 if i is odd, 3 \le i \le n - 1 and i \not\equiv 2 \pmod{3}
              f(u_i) = 2i + 1, if i is odd, 1 \le i \le n - 1 and i \equiv 2 \pmod{3} f(u_i)
                                   = 2i - 1, if i is odd, 1 \le i \le n - 1 and i \equiv 2 \pmod{3}
                                 f(u_i') = 2i, if i is odd, 1 \le i \le n-1
                   f(u_i^n) = 2i + 1, if i is odd, 1 \le i \le n - 1 and i \not\equiv 2 \pmod{3}
Since f(u_1) = 1
    \gcd(f(u_1), f(u_2))=1, \gcd(f(u_1), f(u_1))=1,
     \gcd(f(u_1), f(u_1)) = 1, \quad \gcd(f(u_n), f(u_1)) = 1.
                                     \gcd(f(u_i), f(u_{i+1})) = \gcd(2i, 2(i+1) - 1)
                                                         = \gcd(2i, 2i + 1)
                                          for 2 \le i \le n, i \not\equiv 2 \pmod{3} If i is odd.
     = 1.
                    i is even,
     \gcd(f(u_i), f(u_{i+1})) = \gcd(2i-1, 2(i+1))
                             = \gcd(2i - 1, 2i + 2) = 1 \quad \text{for } 3 \le i \le n, i \not\equiv 2 \pmod{3}
as among these two numbers one is odd and other is even and their difference is 3 and they are not multiples of
     \gcd(f(u_{i-1}), f(u_i)) = \gcd(2(i-1), 2i+1)
                                        = \gcd(2i - 2, 2i + 1) = 1 \quad \text{for } 3 \le i \le n, i \equiv 2 \pmod{3}
as among these two numbers one is even and other is odd their difference is 3. And they are not multiples of 3
     \gcd(f(u_i), f(u_{i+1})) = \gcd(2i+1, 2i+2) = 1 \quad \text{for } 3 \le i \le n, \ i \equiv 2 \pmod{3}
    \gcd(fu_i), f(u_i') = \gcd(2i - 1, 2i) = 1 \text{ for } 3 \le i \le n, i \equiv 2 \pmod{3}
as these two number are consecutive integers
     \gcd(f(u_i), f(u_i)) = \gcd(2i - 1, 2i + 1) = 1 \quad \text{for } 3 \le i \le n, \ i \not\equiv 2 \pmod{3}
    \gcd(f(u_i), f(u_i^*)) = \gcd(2i + 1, 2i - 1) = 1 for 3 \le i \le n, i \equiv 2 \pmod{3}
```

 $\gcd\left(f\left(u_i'\right),f\left(u_i''\right)\right)=\gcd(2i,2i-1)=1 \quad for \ 1\leq i\leq n, \ i\equiv 2 \pmod{3}$ as these two number are consecutive integers

as these two number are odd consecutive integers

 $\gcd(f(u_i'), f(u_i'')) = \gcd(2i, 2i + 1) = 1 \quad \text{for } 1 \le i \le n, \ i \not\equiv 2 \pmod{3}$

Thus *f* is a prime labeling.

HenceG is a prime graph.

Theorem 2.2

The graph obtained by duplicating all the alternate rim vertices by edges in Wheel W_n is a prime graph. If n is even and $n \not\equiv 1 \pmod{3}$.

Proof.

Let
$$V(W_n) = \{ c, u_i / 1 \le i \le n \}$$

 $E(W_n) = \{ cu_i / 1 \le i \le n \} v \{ u_i u_{i+1} / 1 \le i \le n - 1 \} v \{ u_n u_1 \}$

Let G be the graph obtained by duplicating all the alternate rim vertices by edges in Wheel W_n and let the new edges be $u_1^{'}u_1^{''}, u_3^{'}u_3^{''}, \dots, u_{n-1}^{'}u_{n-1}^{''}$ by duplicating the vertices u_1, u_3, \dots, u_{n-1} respectively,

$$V(G) = \{c, u_i \ / \ 1 \le i \le n\} \cup \{u_i', u_i'' / \ 1 \le i \le n-1, i \text{ is odd}\}$$

$$E(G) = \{cu_i / 1 \le i \le n\} \cup \{u_i u_{i+1} / 1 \le i \le n-1\} \qquad \cup \{u_i u_i', u_i u_i'' \ / \ 1 \le i \le n, i \text{ is odd}\} \cup \{u_n u_1\}$$

$$|V(G)| = 2n+1, \qquad |E(G)| = 7n/2$$

Define a labeling $f: V(G) \to \{1,2,3,...,2n+1\}$ as follows

Let
$$f(c) = 1$$
, $f(u_1) = 2n + 1$

$$f(u_i) = \begin{cases} 2i, & \text{for } 2 \le i \le n, & \text{i is even} \\ 2i - 1, & \text{for } 3 \le i \le n - 1, & \text{i is odd,} & i \not\equiv 2 \pmod{3} \end{cases}$$

$$f(u_i) = 2i + 1, & \text{for } 1 \le i \le n - 1, & \text{i is odd,} & i \equiv 2 \pmod{3}$$

$$f(u_i') = 2i, & \text{for } 1 \le i \le n - 1, & \text{i is odd} \\ f(u_i'') = 2i + 1, & \text{for } 1 \le i \le n - 1, & \text{i is odd,} & i \not\equiv 2 \pmod{3} \end{cases}$$

$$f(u_i'') = 2i - 1, & \text{for } 1 \le i \le n - 1, & \text{i is odd,} & i \equiv 2 \pmod{3}$$

Since f(c) = 1

$$\gcd(f(c), f(u_i)) = 1, for 1 \le i \le n$$

$$\gcd(f(u_1), f(u_1')) = \gcd(2n + 1, 2) = 1$$

$$\gcd(f(u_1), f(u_i'')) = \gcd(2n + 1, 3) = 1, for n \not\equiv 1 \pmod{3}$$
Since $n \not\equiv 1 \pmod{3}$, $2n + 1 \not\equiv 0 \pmod{3}$

Therefore $gcd\left(f(u_1), f(u_i^{"})\right) = (2n+1,3)=1,$

Similar to previous theorem for all other pair of adjacent vertices gcd =1

Thus f is a prime labeling.

Hence *G* is a prime graph.

Theorem 2.3

The graph obtained by duplicating all the rim vertices by edges in Crown C_n^* is a prime graph.

Proof:

Let
$$V(C_n^*) = \{u_i, v_i \mid 1 \le i \le n\}$$

 $E(C_n^*) = \{u_i u_{i+1} \mid 1 \le i \le n\} \cup \{u_i v_i \mid 1 \le i \le n\} \cup \{u_n u_1\}$

Let G be the graph obtained by duplicating all the rim vertices by edges in Crown C_n^* and let the new edges be $u_1'u_1'', u_2'u_2'', \dots, u_n'u_n''$ by duplicating the vertices u_1, u_2, \dots, u_n respectively, Then,

$$V(G) = \{u_i, v_i, u_i', u_i'' \mid / 1 \le i \le n\}$$

$$E(G) = \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i v_i, u_i u_i', u_i' u_i'', u_i u_i'' / 1 \le i \le n\} \cup \{u_n u_1\} |V(G)| = 4n,$$

$$|E(G)| = 5n.$$

Define a labeling $f: V(G) \to \{1,2,3,...,4n\}$ as follows

Let
$$f(u_1) = 1$$
, $f(u_1') = 2$, $f(u_1'') = 3$ and $f(v_1) = 4$.
 $f(v_i) = 4i$, for $2 \le i \le n$,
 $f(u_i) = 4i - 1$, for $2 \le i \le n$,
 $f(u_i') = 4i - 3$, for $2 \le i \le n$,
 $f(u_i'') = 4i - 2$, for $2 \le i \le n$,

Since $f(u_1) = 1$

$$\gcd(f(u_1), f(u_2)) = 1$$
, $\gcd(f(u_1), f(u_1')) = 1, \gcd(f(u_1), f(u_1')) = 1$, $\gcd(f(u_1), f(u_n)) = 1$, $\gcd(f(u_1), f(v_1)) = 1$.

Then

$$\gcd(f(u_i), f(u_{i+1})) = \gcd(4i - 1), 4(i + 1) - 1)$$

= $\gcd(4i - 1, 4i + 3) = 1$ for $2 \le i \le n$

```
\gcd\Big(f(u_i),f\Big(u_i^{'}\Big)\Big)=\gcd(4i-1,4i-3)=1 \text{ for } 2\leq i\leq n as these two numbers are odd and their differences are 4,2 respectively. \gcd\Big(f(u_i),f\Big(u_i^{''}\Big)\Big)=\gcd(4i-1,4i-2)=1 \text{ for } 2\leq i\leq n \gcd\Big(f(u_i),f(v_i)\Big)=\gcd(4i-1,4i)=1 \text{ for } 2\leq i\leq n as they are consecutive integers Thus f is a prime labeling. Hence G is a prime graph.
```

Theorem 2.4

The graph obtained by duplicating all the rim vertices by edges in Helm H_n is a prime graph..If $n \not\equiv 4 \pmod{5}$

```
Proof.
```

```
Let V(H_n) = \{c, u_i, v_i / 1 \le i \le n\}
E(H_n) = \{cu_i, u_i v_i / 1 \le i \le n\} \cup \{u_i u_{i+1} / 1 \le i \le n-1\} \cup \{u_n u_1\}
Let G be the graph obtained by duplicating all the rim vertices by edges in Helm H_n and let the new edges
be u_1'u_1'', u_2'u_2'', \dots, u_n'u_n'' by duplicating the rim vertices u_1, u_2, \dots, u_n respectively,
Then,
V(G) = \{c, u_i, v_i, u_i^{'}, u_i^{''} / 1 \le i \le n\} E(G) = \{cu_i, u_i v_i, u_i u_i^{'}, u_i u_i^{''}, u_i^{'} u_i^{''} / 1 \le i \le n\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \cup \{u_i u_{i+1} / 1 \le i \le
1 \cup \{unu1\}. VG = 4n + 1, EG = 6n,
Define a labeling f: V(G) \rightarrow \{1,2,3,...,4n+1\} as follows
Let f(c) = 1, f(u_1) = 5, f(u_1') = 3, f(u_1'') = 4, and f(v_1) = 2.
                                                                                  for 2 \le i \le n,
                         f(u_i) = 4i - 1,
                         f(u_i') = 4i,
                                                                                      for 2 \le i \le n,
                         f(u_i^n) = 4i + 1,
                                                                                 for 2 \le i \le n,
                         f(v_i) = 4i - 2,
                                                                                      for 2 \le i \le n
Since f(c) = 1
           \gcd(f(c), f(u_i)) = 1
            \gcd(f(u_1), f(u_1)) = \gcd(5,3) = 1
\gcd(f(u_1), f(u_1)) = \gcd(5,4) = 1
           \gcd(f(u_1), f(v_1)) = \gcd(5,2) = 1
         \gcd(f(u_1), f(u_2)) = \gcd(5,7)=1
          \gcd(f(u_n), f(u_1)) = \gcd(4n - 1.5) = 1
Since n \not\equiv 4 \pmod{5} and 4n-1 is not a multiple of 5
\gcd(f(u_i), f(u_{i+1})) = \gcd(4i-1), 4(i+1)-1
                                                             = \gcd(4i - 1,4i + 3) = 1 for 2 \le i \le n
            \gcd(f(u_i), f(u_i^*)) = \gcd(4i - 1, 4i + 1) = 1 for 2 \le i \le n
as these two numbers are odd and also their differences are 4,2 respectively.
            \gcd(f(u_i), f(u_i')) = \gcd(4i - 1, 4i) = 1 for 2 \le i \le n
            \gcd(f(u_i), f(v_i)) = \gcd(4i - 1, 4i - 2) = 1 for 2 \le i \le n
as they are consecutive integers
Thus f is a prime labeling.
```

Theorem 2.5

Hence G is a prime graph.

The graph obtained by duplicating all the rim vertices by edges in $GearG_n$ is a prime graph..If $n \not\equiv 4 \pmod{5}$

Proof.

```
Let V(G_n) = \{c, u_i, v_i \ / \ 1 \le i \le n\}

E(G_n) = \{cv_i, v_iu_i \ / \ 1 \le i \le n\} \cup \{u_i u_{i+1} \ / \ 1 \le i \le n-1\} \cup \{u_n u_1\}
```

Let G be the graph obtained by duplicating all the rim vertices by edgesin Gear G_n and let the new edges be $u_1^{'}u_1^{''}, u_2^{'}u_2^{''}, \dots, u_n^{'}u_n^{''}$ by duplicating the rim vertices u_1, u_2, \dots, u_n respectively, Then,

```
V(G) = \{c, u_i, u_i', u_i'', v_i / 1 \le i \le n\} \\ E(G) = \{cv_i, v_i u_i, u_i u_i', u_i u_i'', u_i' u_i'' / 1 \le i \le n\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i \le n - 1\} \\ \cup \{u_i u_{i+1} / 1 \le i
1 \cup \{unu1\}.VG = 4n + 1, EG = 6n.
Define a labeling f: V(G) \rightarrow \{1,2,3,...,4n+1\} as follows
Let f(c) = 1, f(u_1) = 5, f(u_1') = 3, f(u_1'') = 4, and f(v_1) = 2.
                                       f(u_i) = 4i - 1, for 2 \le i \le n,
                                       f(u_i^{'}) = 4i,
                                                                                                                                          for 2 \le i \le n,
                                       f(u_i^n) = 4i + 1,
                                                                                                                                 for 2 \le i \le n,
                                       f(v_i) = 4i - 2,
                                                                                                                                      for 2 \le i \le n
Since f(c) = 1
                 \gcd(f(c), f(v_i)) = 1, for 1 \le i \le n
Similar to the previous theorem we can show that for all other pair of adjacent vertices g.c.d is 1
Thus f is a prime labeling.
  Hence G is a prime graph.
Theorem 2.6
                                       The graph obtained by duplicating the centre vertex and all the alternate vertices by edges in Star
```

 $S_n = K_{1,n}$ is a prime graph.. If n is even

Proof.

```
Let V(S_n) = \{c, u_i / 1 \le i \le n\}
E(S_n) = \{cu_i/1 \le i \le n\}
Let G be the graph obtained by duplicating the centre vertex and all the alternate vertices by edgesin Star
S_n = K_{1,n} and let the new edges be c'c'', u'_1u''_1, u'_3u''_3, ..., u'_{n-1}u''_{n-1} by duplicating the
c, u_1, u_3, \dots u_{n-1} respectively,
V(G) = \{c, c', c'', u_i / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n, i \text{ is odd}\} \\ E(G) = \{cu_i, cc', cc'', c'', c'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i'' / 1 \le i \le n\} \cup \{u_i', u_i
\{u_i u_i', u_i u_i'', u_i' u_i''/1 \le i \le n, i \text{ is odd}\}.
|V(G)| = 2n + 3, |E(G)| = \frac{5n}{2} + 3
Define a labeling f: V(G) \rightarrow \{1,2,3,...,2n+3\} as follows
Let f(c) = 1, f(c') = 2n + 2, f(c'') = 2n + 3. f(u_i) = \begin{cases} 2i + 1, \\ 2i - 2, \end{cases}
                                                                                                                                                                                                                                                        for 1 \le i \le n,
                                                                                                                                                                                                                                                                                                                             i is odd
f(u_i') = 2i + 2,
                                                                for 1 \le i \le n, i is odd
f(u_i^{"}) = 2i + 3,
                                                                            for 1 \le i \le n,
                                                                                                                                                   i is odd
Since f(c) = 1
              \gcd(f(c), f(u_i)) = 1, for 1 \le i \le n
\gcd(f(c), f(c')) = 1, \quad \gcd(f(c), f(c'')) = 1
           \gcd(f(c'), f(c'')) = \gcd(2n + 2, 2n + 3) = 1
          \gcd(f(u_i), f(u_i')) = \gcd(2i + 1, 2i + 2) = 1 for 1 \le i \le n
        \gcd(f(u_i'), f(u_i'')) = \gcd(2i + 2, 2i + 3) = 1 \text{ for } 1 \le i \le n
  \gcd(f(u_i), f(u_i^n)) = \gcd(2i + 1, 2i + 3) = 1 \text{ for } 1 \le i \le n
as they are consecutive odd integers
Thus f is a prime labeling.
```

Hence G is a prime graph.

The graph obtained by duplicating all the alternate vertices by edges in Friendship graph \mathcal{T}_n , except centre, is a prime graph.

Proof.

```
Let V(T_n) = \{c, u_i / 1 \le i \le 2n\}
E(T_n) = \{cu_i / 1 \le i \le 2n\} \cup \{u_i u_{i+1} / 1 \le i \le 2n - 1, i \text{ is odd}\}.
Let G be the graph obtained by duplicating all the alternate vertices by edges in T_n and let the new edges be
u_1'u_1'', u_3'u_3'', \dots, u_{2n-1}'u_{2n-1}'' by duplicating the vertices u_1, u_3, \dots, u_{2n-1} respectively,
Then
```

```
V(G) = \{c, u_i, u_i', u_i'' / 1 \le i \le 2n\}
E(G) = \{cu_i / 1 \le i \le 2n\} \cup \{u_i u_i', u_i u_i', u_i' u_i', u_i u_{i+1} / 1 \le i \le 2n-1, \text{ is odd}\}
                                              |V(G)| = 4n + 1, |E(G)| = 6n,
Define a labeling f: V(G) \rightarrow \{1,2,3,...,4n+1\} as follows
Let f(c) = 1.
                               f(u_i) = \begin{cases} 2i+1, & for \ 1 \leq i \leq 2n-1, \\ 2i-2, & for \ 2 \leq i \leq 2n, \end{cases}
                                                                                         i is odd
                                                                                         i is even
                                for 1 \le i \le 2n-1,
        f(u_i) = 2i + 2,
        f(u_i^n) = 2i + 3, for 1 \le i \le 2n - 1,
                                                                  i is odd
Since f(c) = 1
    \gcd(f(c), f(u_i)) = 1,
                               for 1 \le i \le 2n - 1, i is odd
    \gcd(f(c), f(u_i)) = 1,
                                  for 2 \le i \le 2n,
If i is odd
     \gcd(f(u_i), f(u_{i+1})) = \gcd(2i + 1, 2(i + 1) - 2)
    = \gcd(2i + 1, 2i) = 1 \text{ for } 1 \le i \le 2n - 1
     \gcd(f(u_i), f(u_i')) = \gcd(2i + 1, 2i + 2) = 1 \text{ for } 1 \le i \le 2n - 1
\gcd(f(u_i), f(u_i^*)) = \gcd(2i + 1, 2i + 3) = 1 for 1 \le i \le 2n - 1
     \gcd(f(u_i'), f(u_i'')) = \gcd(2i + 2, 2i + 3) = 1 \text{ for } 1 \le i \le 2n - 1
Thus fis a prime labeling
Hence G is a prime graph.
```

Theorem 2.8

The graph obtained by duplicating all the alternate vertices by edges in Prism D_n is a prime graph. Where n is even.

```
Proof.
Let V(D_n) = \{u_i / 1 \le i \le n\}
             E(D_n) = \{u_i u_{i+1} / 1 \le i \le n-1\} \cup \{u_n u_1\} \cup \{u_1 u_i / 3 \le i \le n-1\}
Let G be the graph obtained by duplicating all the alternate vertices by edges in Prime D_n and let the new
edges be u_1'u_1'', u_3'u_3'', \dots, u_{n-1}'u_{n-1}'' by duplicating the vertices u_1, u_3, \dots, u_{n-1} respectively,
V(G) = \{u_i / 1 \le i \le n\} \cup \{u_i, u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i / 1 \le i \le n\} \cup \{u_i, u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i / 1 \le i \le n\} \cup \{u_i, u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i / 1 \le i \le n\} \cup \{u_i, u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i / 1 \le i \le n\} \cup \{u_i', u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i / 1 \le i \le n\} \cup \{u_i', u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n\} \cup \{u_i', u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n\} \cup \{u_i', u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n\} \cup \{u_i', u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n\} \cup \{u_i', u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i \le n - 1, i \text{ is odd}\}E(G) = \{u_i' / 1 \le i 
\{u_i u_{i+1}/1 \le i \le n-1\} \cup \{u_i u_i', u_i u_i', u_i' u_i''/1 \le i \le n-1, i \text{ is odd }\} \cup \{u_n u_1\} \cup \{u_1 u_i/3 \le i \le n-1\}.
|V(G)| = 3n, |E(G)| = (7n - 6)/2.
Let f(u_1) = 1.
                                                                                         for 2 \le i \le n, i is even
for 3 \le i \le n - 1, i is odd, i \not\equiv 2 \pmod{3},
                                                                  f(u_i) = 2i + 1, for 3 \le i \le n - 1, i is odd, i \equiv 2 \pmod{3}
                                                                  f(u'_i) = 2i, for 1 \le f(u'_i) = 2i + 1, for 1 \le i \le n,
                                                                                                                                                                                for 1 \le i \le n, i is odd
                                                                                                                                                                                                                                            i is odd, i \not\equiv 2 \pmod{3}
                                                                                                                                         for 1 \le i \le n,
                                                                   f(u_i'') = 2i - 1 \quad ,
                                                                                                                                                                                                                                             i is odd i \equiv 2 \pmod{3}
Since f(u_1) = 1
             \gcd(f(u_1), f(u_i)) = 1 for 3 \le i \le n-1
Similar to the theorem 2.1 we can show that for all other pair of adjacent vertices
Thus f is a prime labeling
```

Theorem 2.9

Hence G is a prime graph.

The graph obtained by duplicating all the vertices of the cycles by edgesin Butterfly graph $B_{n,m}$ is a prime graph. If $m \ge 2n-2$

Proof.

$$\text{Let} V(B_{n,m}) = \{u_i \ / \ 1 \le i \le 2n-1\} \cup \{v_i \ / \ 1 \le i \le m\} E(B_{n,m}) = \{u_i \ u_{i+1} \ / \ 1 \le i \le n-1\} \cup \{u_i \ u_{i+1} \ / \ (n+1) \le i \le 2n-2\} \cup \{u_n u_1 \ , u_1 u_{n+1}, u_{2n-1} u_1\} \cup \{u_1 v_i \ / \ 1 \le i \le m\}$$

Case (i). If m = 2n - 2

Let G be the graph obtained by duplicating all the vertices of two copies of C_n by edges in $B_{n,m}$ and let the new edges be $u_1^{'}u_1^{"}, u_2^{'}u_2^{"}, \dots, u_{2n-1}^{'}u_{2n-1}^{"}$ by duplicating the vertices $u_1, u_2, \dots, u_{2n-1}$ respectively, Then,

```
V(G) = \{u_i, u_i', u_i'' / 1 \le i \le 2n - 1\} \cup \{v_i / 1 \le i \le m\}
                                                                               E(G) = \{u_i u_{i+1}/1 \le i \le n-1\} \cup
                                                             \{u_i u_i', u_i u_i'', u_i' u_i''/1 \le i \le 2n - 1\} \cup
\{u_i u_{i+1} / n + 1 \le i \le 2n - 2\} \cup
                                                       \{u_1v_i/1\leq i\leq m\}.
\{u_nu_1,u_1u_{n+1},u_{2n-1}u_1\} \cup \\
                                   |V(G)| = 6n - 3 + m,
                                                                  |E(G)| = 8n - 3 + m.
Define a labeling f: V(G) \rightarrow \{1,2,3,...,6n-3+m\} as follows
\operatorname{Let} f(u_1) = 1
          f(u_i) = 4i - 3,
                                 for 1 \le i \le n and n+1 \le i \le 2n-1
          f(u_i') = 4i - 2, for 1 \le i \le 2n - 1,

f(u_i') = 4i - 1, for 1 \le i \le 2n - 1,
          f(v_i) = 4i
                                  for 1 \le i \le m \ (= 2n - 2)
Since f(u_1) = 1
    \gcd(f(u_1), f(v_i)) = 1 for 1 \le i \le m.
\gcd(f(u_1), f(u_n)) = 1 \gcd(f(u_1), f(u_{n+1})) = 1 \gcd(f(u_1), f(u_{2n-1})) = 1
\gcd(f(u_i), f(u_{i+1})) = \gcd(4i-3), 4(i+1)-3)
                        = \gcd(4i - 3,4i + 1) = 1 for 1 \le i \le n-1 and n+1 \le i \le 2n-2
     \gcd(f(u_i), f(u_i^*)) = \gcd(4i - 3, 4i - 1) = 1 for 1 \le i \le n-1 and n+1 \le i \le 2n-2
as these two numbers are odd and their differences are 4,2 respectively.
     \gcd(f(u_i), f(u_i')) = \gcd(4i - 3, 4i - 2) = 1 \text{ for } 1 \le i \le n-1 \text{ and } n+1 \le i \le 2n-2
Then f is a prime labeling.
```

Case (ii). If m > 2n - 2

Then the same labeling given in case (i) can be given for all the vertices up to m=2n-2. For all other vertices give consecutive labelsso that the resulting labeling is prime.

Thus f is a prime labeling

Hence G is a prime graph.

Examples

Illustration 2.1

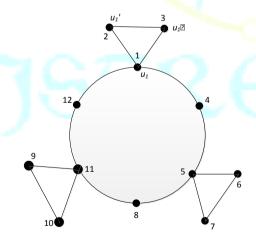


Figure 1. Prime labeling of duplication of all the alternate vertices by edges in C_6

Illustration 2.2

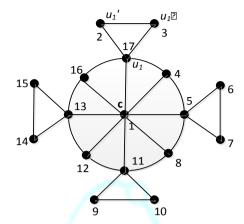


Figure 1. Prime labeling of duplication of all the alternate rim vertices by edges in C_8 .

Illustration 2.3

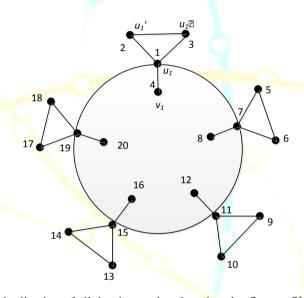


Figure 1. Prime labeling of duplication of all the rim vertices by edges in Crown C_5^* Illustration 2.4

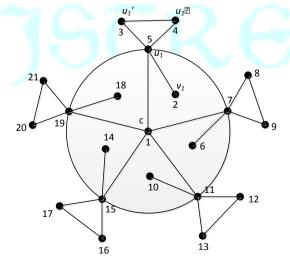


Figure 1. Prime labeling of duplication of all the rim vertices by edges in $Helm H_5$

Illustration 2.5

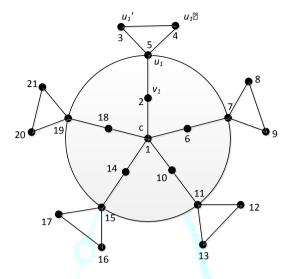


Figure 1. Prime labeling of duplication of all the rim vertices by edges in Gear graph G_5 .

Illustration 2.7

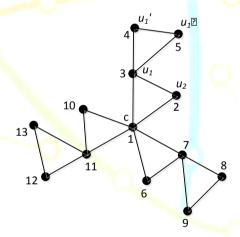


Figure 1. Prime labeling of duplication of all the alternate vertices by edges in Friendship graph T_3 , except centre.

Illustration 2.8

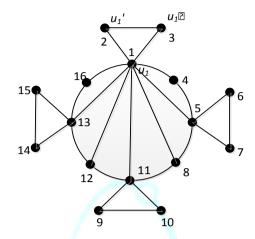


Figure 1. Prime labeling of duplication of all the alternate vertices by edges in Prism D_8

Illustration 2.9

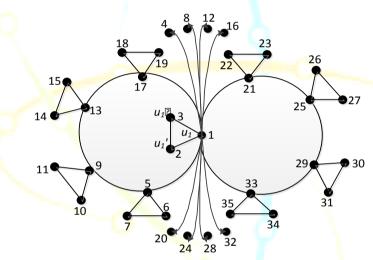


Figure 1. Prime labeling of duplication of all the vertices of two cycles C_5 by edges in Butterfly graph $B_{5,8}$.

III. CONCLUSION

Here we investigate Nine corresponding results on prime labeling analogues work can be carried out for other families also.

REFERENCES

- [1.] Bondy.J.A and Murthy. U.S.R, "Graph Theory and Application". (North Holland). Newyork (1976).
- [2.] Deretsky.T, Lee.S.M and Mitchem.J, "On Vertex Prime Labeling of Graphs inGraph Theory, Combinatorics and Applications", Vol. 1 Alavi.J, Chartrand. G, Oellerman.O and Schwenk. A, eds. Proceedings 6th International Conference Theory and Application of Graphs (Wiley, New York 1991) 359-369.
- [3.] Fu. H.C and Huany. K.C. "On Prime Labeling Discrete Math", 127 (1994) 181-186.
- [4.] Lee. S. M, Wui.L and Yen.J"On the Amalgamation of Prime Graphs", Bull. Malaysian Math. Soc. (Second Series) 11, (1988) 59-67.
- [5.] SundaramM.Ponraj&Somasundaram. S. (2006) "On Prime Labeling Conjecture", ArsCombinatoria, 79, 205-209.
- [6.] Tout. A, Dabboucy.A.N and Howalla. K, "*Prime Labeling of Graphs*", Nat.Acad.Sci letters11 (1982)365-368 Combinatories and Application Vol.1Alari.J(Wiley.N.Y 1991) 299-359.
- [7.] S.K Vaidya and LekhaBijukumar, "Some New Families of Mean Graphs", Journal of Mathematics Research, vol.2. No.3; August 2010.