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Abstract: While the computed transported turbulence dissipation rate, , works well as part of a differential 

equation-based turbulence model in predicting turbulent flows, it doesn’t seem to work well when used to 

determine the Kolmogorov length-scale (ℓ𝐾𝑜𝑙) which, like the other Kolmogorov scales, exists within the viscous 

sublayer portion of the inner turbulent boundary layer zone. Using  may lead to an increase in ℓ𝐾𝑜𝑙  as roughness 

increases, the opposite of what should happen. It is proposed here to replace the computed  (and its level at the 

1st point off the wall as dictated by wall functions) with the one resulting from basic law-of-the-wall sublayer 

relationships which includes the Prandtl-Schlichting (P-S) roughness effect. This approach enables physically 

correct prediction of ℓ𝐾𝑜𝑙 , particularly a reliable decrease thereof with increasing roughness level. 

 

Keywords: Kolmogorov scales, roughness, viscous sublayer. 

 

I. Introduction 

The Kolmogorov length-scale (ℓ𝐾𝑜𝑙), under high Re conditions, is commonly expressed as (𝜈3 𝜀⁄ )1 4⁄  but 

the computed decay rate of turbulence kinetic energy, , doesn’t seem to be adequately sensitive to surface 

roughness, leading to over-estimation and sometimes even wrong behavior of ℓ𝐾𝑜𝑙 .This could be a consequence 

of both the  transport equation and its wall boundary condition lacking correct roughness effects, even though 1 

is set by the law-of-the-wall including roughness effect. 

An alternative way to express ℓ𝐾𝑜𝑙  is proposed here, its basic formulation being desensitized to whether the first 

off-wall computational points lay within the viscous sublayer (including the solve-to-wall level of y+ 1) or in the 

logarithmic overlap (see Appendix for flow property details in these regions).The basic aim is to select formulation 

ingredients such that the resulting ℓ𝐾𝑜𝑙  is minimal (to admit more small roughness levels) and sensitive to the 

roughness size since surface (boundary) conditions are strongly influencing the immediately adjacent viscous 

sublayer where Kolmogorov micro-scales are defined. Effect of roughness height on boundary layer features is 

seen below: 

 
Figure 1. Velocity profile vs. roughness height 

 

As seen in Fig. 1, the larger roughness element, r2, causes increase in w (red broken line velocity profile, U2) but 

the outer velocity portion of U2 is the same as that of the smaller roughness, r1. Conservation on mass-flow-rate, 

𝑚̇, dictates adjustments within the lower section of the boundary layer. Thus the inner portion of the boundary 

layer (viscous sublayer and logarithmic overlap) shrinks in the normal-to-wall direction, whence the dissipative 

eddies become smaller. And since ℓ𝐾𝑜𝑙  is a measure of these eddies, it is expected to also become smaller as the 

roughness increases.  

Following the next Theory section, five examples are given to exhibit the usefulness of the proposed approach to 

compute ℓ𝐾𝑜𝑙 . 
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Theory 

1. Definition of ℓ𝐾𝑜𝑙  

Following Eq. (C1) in the Appendix, 

𝜀 =
2𝐴𝜀𝑘2

𝜈𝑅𝑦(1 − 𝑒−𝐴𝜀𝑅𝑦)
                                                                                                                                       (1) 

where 

𝐴𝜀 = 𝐶𝜇
3 4⁄ (2𝜅)⁄                                                                                                                                                 (1𝑎) 

𝑅𝑦 = 𝑚𝑖𝑛{𝑦+ 𝐶𝜇
1 4⁄

⁄ , √𝐴𝑘𝑦+2
},    𝐴𝑘 ≅ 0.0266                                                                                         (1𝑏) 

Here the 2nd term within the parentheses represents the viscous sublayer. Thus 

ℓ𝐾𝑜𝑙 = (
𝜈3

𝜀
)

1 4⁄

=
𝜈

√𝑘
[
𝑅𝑦(1 − 𝑒−𝐴𝜀𝑅𝑦)

2𝐴𝜀
]

1 4⁄

                                                                        (2) 

where k (see Appendix Eq. (A1) and Fig. 2) is chosen at its maximum value, attained within the logarithmic layer: 

𝑘 =
1

√𝐶𝜇

(
|𝜏|

𝜌
)

𝑤

                                                                                                                                                (3) 

Importantly, w magnitude increases with roughness size, thereby increasing k and, by Eq. 2, decreasing ℓ𝐾𝑜𝑙 . This 

is concluded also for the original ℓ𝐾𝑜𝑙 = (
𝜈3

𝜀
)

1 4⁄

based on the behavior of  within the viscous sublayer, leading 

to ℓ𝐾𝑜𝑙 = (
𝜈3

𝜀
)

1 4⁄

= (2𝐴𝑘)−1 4⁄ 𝜈√(
𝜚

𝜏
)

𝑤
 .  Fig. 3 shows experimental data (Bellucci et al., 2014) of increasing k 

with roughness level in the viscous sublayer. Since 𝜀~ 𝑘2 𝜈⁄  within the sublayer,  also gets larger with increasing 

roughness. Consequently, both original and proposed ℓ𝐾𝑜𝑙  will be reduced in size as roughness increases. This has 

been found also in Marati et al., 2004, where ℓ𝐾𝑜𝑙 =
(𝜅𝑦)1 4⁄ 𝜈3 4⁄

(𝜏𝑤 𝜌𝑤⁄ )
3 8⁄ . 

The effect of roughness on w is based on the P-S (Prandtl and Schlichting, 1934) skin friction formula when the 

1st computational points are within the viscous sublayer:  

𝐶𝑓 = (2.87 + 1.58𝑙𝑜𝑔10
𝑠

𝐾𝑆
)

−2.5
/ (1 +

𝛾−1

2
𝑀∞

2)
0.467

 ,𝜏𝑤 = −
1

2
𝜚∞𝑈∞

2𝐶𝑓 and 𝑢𝜏 = √(𝜏 𝜌⁄ )𝑤       (4) 

This is combined with equations 2 and 3, thus introducing roughness effect explicitly. 

 
Figure 2. Sketch of near-wall profile of k                                   Figure 3. Sublayer increase of k with roughness, from Ref. [1] 

 

2. The Kolmogorov length-scale as a function of s 
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Based on the Appendix Eqs. (B7-B8), the Kolmogorov length-scale grows along the surface streamline distance, 

s, as follows: 

ℓ𝐾𝑜𝑙𝑠𝑢𝑏𝑙𝑎𝑦𝑒𝑟
~√(𝜌 𝜏⁄ )𝑤 =

1

√𝜈𝑤(𝜕𝑢 𝜕𝑦⁄ )𝑤
                                                                                                        (5a) 

ℓ𝐾𝑜𝑙𝑙𝑜𝑔−𝑙𝑎𝑦𝑒𝑟
~ [

𝜈

√(𝜏 𝜚⁄ )𝑤
]

1 4⁄

= [
𝜈 𝜈𝑤⁄

(𝜕𝑢 𝜕𝑦⁄ )𝑤
]

1 4⁄
                                                                                    (5b) 

and since (u/y)w commonly becomes smaller along s, the Kolmogorov length-scale grows along it as seen in 

Fig. 4. 
 

 
diminishes along the streamwise direction  wy)/tUFigure 4. ( 

 

Test cases 

The commercial flow solver CFD++ (see details in Chakravarthy, 1999) was used with the realizable k- closure 

(Goldberg et al., 1998) to compute the following flow examples, using a non-equilibrium wall function (see 

Appendix) which includes the effects of p/s and roughness, the latter by Eq. (4). All grids used for the following 

flow cases have been previously established to yield mesh-independent solutions. 

 

(I) Flat plate 

Air flow over a rough plate was computed with two roughness levels: KS=3 micro ()-meter and 0.6 

mm. 1stoff-plate grid centroids were once within the viscous sublayer (y*=7) and once in the 

logarithmic layer (y*=56). Fig. 5 compares ℓ𝐾𝑜𝑙  based on the standard, directly computed , 

(𝜈3 𝜀⁄ )1 4⁄ ,with that based on Equations 1-4. The choice of KS = 3x10-6 m emanates from Schlichting 

1968, p.612, where camouflage paint of this equivalent sand-grain height was applied to a war plane, 

resulting in a substantial increase in friction drag relative to that of the unpainted airplane. The 

standard Kolmogorov length-scale is about 5 times larger than this Ks, rendering it negligible even 

though in reality it has a large effect on viscous drag. This indicates that the standard ℓ𝐾𝑜𝑙formula 

may not be adequate for cases involving rough surfaces, suggesting the alternative formulation 

hereby proposed. The standard formula predicts a considerably larger drop in ℓ𝐾𝑜𝑙  than the proposed 

method does as the KS magnitude increases to 0.6 mm (solid vs. dashed lines in Fig. 5L). A similar 

trend is observed in the y+=56 case (Fig. 5R), however, since the Kolmogorov scales exist only 

within the viscous sublayer, the 1st computational point must be inside this sublayer, therefore y+=56 

is not acceptable. Since the smaller ℓ𝐾𝑜𝑙is predicted by the current proposal, it admits a larger range 

of roughness sizes. This test case indicates that limiting the 1st off-surface computational points 

within the viscous sublayer (including y*  1 for direct solve-to-wall) is the preferable approach 

(Fig. 5L) which adheres to the physics since the Kolmogorov scales exist only within the viscous 

sublayer. 
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Figure 5. ℓ𝐾𝑜𝑙  profiles along a rough plate, KS=3m and 0.6 mm.1st computational points being inside the viscous 

sublayer(L) and within the logarithmic layer (R) 

(II) Flow over a curved surface 

This is a case of flow over a curved surface (from Suga et al., 2006). Wall geometry and computational mesh are 

shown in Fig. 6(L), consisting of 4672 cells of which 2426 are triangles and the rest are quadrilaterals adjacent to 

the wall. 91 cells are along the wall and 50 normal to it, of which 23 are the quadrilaterals. The 1st row along the 

wall has a 0.5 mm height, corresponding to y* 10 upstream of the curve and y* 8 along it. The wall is subject 

to air flow at a temperature of 288 K and U=22 m/s.  

Figure 6(R) shows ℓ𝐾𝑜𝑙  profiles along the wall for rough surfaces with KS=0.003 mm and 0.6 mm. As in the flat 

plate case, Eq. (2) predicts lower ℓ𝐾𝑜𝑙  levels than those from the standard approach, thereby widening the range 

of admissible small KS levels. Both methods predict lower levels of ℓ𝐾𝑜𝑙under the higher roughness level as 

expected.  

 
Figure 6. (L) Computational domain, (R) ℓ𝐾𝑜𝑙profiles 

 

It is noted in both the above examples (as well as in the next ones) that the leading-edge zone of the surface 

exhibits very large ℓ𝐾𝑜𝑙  as predicted by the standard method, ℓ𝐾𝑜𝑙 = (𝜈3 𝜀⁄ )1 4⁄ , likely due to underprediction of 

 in that region, whereas the proposed approach (Equations 1-4) behaves considerably better in this zone. 

 

(III) NACA 0012 airfoil at =6o 
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Addressed in Lu and Liou, 2009, this airfoil mesh has 113362 triangles and 12680 quadrilaterals. There are 947 

quadrilateral cells around the airfoil with y*5 in the trailing edge region on both pressure and suction sides and 

y* 15 in the leading-edge zone (Fig. 7L). 

 
Figure 7. (L) mesh around the airfoil, (R) ℓ𝐾𝑜𝑙profiles along the NACA 0012 suction surface. 

 

As in previous cases, the proposed formulation yields a smaller ℓ𝐾𝑜𝑙than the standard one does and in this case 

also produces no oscillation at the leading-edge zone (Fig. 7R), as opposed to the standard approach. Comparing 

the 0.6 mm rough wall results with those of the 3 -meter one shows the consistency of the proposed approach 

versus the inconsistency of the standard one regarding the behavior of ℓ𝐾𝑜𝑙when switching from lower to higher 

roughness: Along the trailing edge section ℓ𝐾𝑜𝑙  is predicted larger for the higher roughness whereas the opposite 

is physically correct. On the other hand, the proposed method (red lines) is consistently correct along the entire 

airfoil. 

 

(IV) Water flow over a sand dune 
This test case is a sand dune with water flowing over it (from Suga et al., 2006). The flow includes a separation 

zone at the bottom of the dune. Equivalent sand-grain roughness heights of 3 -meter and 0.6 mm are compared 

as before. The domain is 1.6 m long and the free air/water surface is located 0.292 m above the level of the 

beginning of the dune, treated as a symmetry boundary to prevent flow normal to it. The bulk mean velocity is U 

= 0.633 m/s and the Reynolds number, based on U and the free surface height, is 175,000. The quadrilaterals grid 

size is 16,121 and the 1st computational points above the dune are within the viscous sublayer, y*=7 being a typical 

level. Figure 8(L) shows the grid and 8(R) shows plots of ℓ𝐾𝑜𝑙profiles along the dune for the two roughness levels, 

as predicted by the standard and proposed formulations. 

 

Figure 8. (L) Sand dune mesh, (R) ℓ𝐾𝑜𝑙profiles along dune (lower surface) 

It is noticed in Fig. 8R that the proposed ℓ𝐾𝑜𝑙  shows no difference in spite of a factor of 200 between the two 

roughness levels. The reason is the high density of water. For example, at the mid-point (x=0.8 m) the two levels 
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of roughness give rise (Eq. 3) to Δ𝑘 =
Δ𝜏𝑤

𝜌𝑤
=

0.031

1003.9
≅ 3 × 10−5(m/s)2 and that imposes a negligible change in 

ℓ𝐾𝑜𝑙 , Eq. 2. However, like in previous examples, the new ℓ𝐾𝑜𝑙  is smaller than the one from the standard approach 

and it doesn’t suffer from over-predicting ℓ𝐾𝑜𝑙  in the inlet zone as the standard method does. 

(V)    Channel flow with a lower rough wall including a curved portion 

Here is a channel flow with a rough lower surface which includes a curved portion. Song and Eaton, 2002, describe 

this flow case. Figures 9 show topology and grid for this case. Fig. 9(L) includes details like the circular curved 

ramp section length of L=70 mm, its radius of 127 mm and its 21 mm height. The mesh is especially dense in the 

curved ramp area due to the flow being separated there. The upper channel wall is smooth while the lower wall is 

rough (originally with KS=1.2 mm but here KS=3 -meter and 0.6 mm are used). Inflow speed is 20 m/s and 

turbulence levels are Tu=0.5% and t/=30. The 11,200 cells mesh has 8,000 quadrilaterals and the rest are 

triangles. The 0.15 mm height of the next-to-walls grid layer translates into 7 y* 4 on the ramp wall.  

Fig. 10 compares ℓ𝐾𝑜𝑙  along the lower surface for KS=0.6 mm and KS=3 -meter levels of roughness, using both 

standard and new methods. Both approaches reduce ℓ𝐾𝑜𝑙  as the roughness increases, with the standard method 

producing a considerably larger jump as in previous cases. However, the proposed method predicts a smaller ℓ𝐾𝑜𝑙  

level for the 3 -meter roughness than the standard one predicts for the 0.6 mm roughness (a trend seen in previous 

flow examples) and, as before, it avoids the standard method’s trend of overpredicting ℓ𝐾𝑜𝑙in the inlet region. 

 

Figure 9. (L) Topology and dimensions, (R) Grid 

 
Figure 10. ℓ𝐾𝑜𝑙profiles along curved ramp (lower surface) 

 

Concluding observations 
(1) The larger the roughness, the thinner the inner boundary layer - including the sublayer, due to increased 

(Ut/y)w (Fig. 1). That translates into smaller dissipative eddies. Since ℓ𝐾𝑜𝑙  is a measure of these eddies within 

the sublayer, it is also expected to shrink in size with increasing roughness. The proposed approach adheres to 

this: ℓ𝐾𝑜𝑙  decreases when moving from a low roughness level to a higher one (examples 1, 2, 3 and 5). However, 

the standard method predicts the opposite trend in the trailing edge region of example 3 (airfoil), this being 

unphysical. On the other hand, in examples1, 2, 4 and 5 the standard method does predict the correct trend.  
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(2) When switching from KS,1= 3 -meter to KS,2= 0.6 mm roughness, a change in ℓ𝐾𝑜𝑙of 
ℓ𝑘𝑜𝑙,1

ℓ𝑘𝑜𝑙,2
≃

(
2.87+1.58𝑙𝑜𝑔10

𝑠

𝐾𝑆,1

2.87+1.58𝑙𝑜𝑔10
𝑠

𝐾𝑆,2

)

1.25

is expected, based on Eqs (2-4). With s=1 m this ratio is about 1.6. In the1stexample the 

standard method yields 1.8 and the new one gives 1.2. In the 2nd one the standard method predicts 1.6 while the 

proposed one yields again 1.2. In the 5th case 2.0 results from the standard approach whereas the new one predicts 

a ratio 1. Thus, the standard method is closer to the expected ratio, however, it exhibits a wrong-oriented ratio 

in example 3.  

(3) Again, in the 3rd example (airfoil), along the trailing edge zone, the standard method predicts that the rougher 

wall causes a large increase in ℓ𝐾𝑜𝑙  whereas the opposite is correct, based on fundamental near-wall relationships 

from the law-of-the-wall in the viscous sublayer (Equations1-4 and the Appendix). Along the rest of the airfoil 

the standard method does recover the correct behavior, but the proposed approach maintains correct prediction 

trends along the entire airfoil. 

(4) The standard approach introduces high levels of ℓ𝐾𝑜𝑙  in the inflow (or leading edge) region, as seen in cases 

1, 2, 4 and 5. The new method doesn’t suffer from this phenomenon due to avoiding usage of the solved variable 

. 

(5) The proposed method is based on the fundamental rules of the sublayer’s wall function (Equations 1-3 which 

already include roughness effects by using the P-S [Prandtl and Schlichting, 1934] skin friction formula, Eq. 4) 

and those rules have been proven correct since many years ago, based on numerous experimental data. Since there 

is no such thing as a truly smooth surface, wall functions have long been valid for mildly rough walls as long as 

roughness is taken into account in the form of a sand-grain equivalent height, without changing the surface 

geometry. Of course, large roughness (e.g. KS > 3 mm) should be implemented as part of the surface geometry 

and grid, in which case the currently proposed treatment isn’t necessary. 

(6) Whenever there are doubts, it is always advantageous to resort to fundamental relationships. In the present 

case eliminating , computed from its own transport equation and subject to its own wall BC (with 𝜀1 = 2𝐴𝑘𝑢𝜏
4/𝜈, 

see Appendix B, and Pk=0 in the viscous sublayer) and replacing  with the fundamental wall function-based 

description thereof (Equations 1-3 which include the P-S roughness-influenced Cf, Eq. 4) is a safe and secure way 

of dealing with ℓ𝐾𝑜𝑙 . 

 

Nomenclature 

Ak=0.0266,        constant used in the viscous sublayer 

B   5.5,             constant in the logarithmic wall function branch 

Cf                                    skin friction 

C=0.09,             coefficient of eddy viscosity in some k- turbulence models 

E=9.8,                 constant in some forms of the logarithmic Law-of-the-Wall 

f                                      near-wall damping function 

KS                                    sand grain height representing roughness level 

k                          turbulence kinetic energy 

ℓ                          length-scale 

M                        Mach number 

Pk                        production of turbulence kinetic energy 

p                         static pressure  

Re                       flow Reynolds number 

Rt                        turbulence Reynolds number 

Ry                                    turbulence Reynolds number based on y+ 

S                         strain rate 

s                          distance along body contour 

Tu                       freestream turbulence intensity 

U, u                     streamwise velocity component 

Ut                                     tangent-to-wall velocity component 

u+=Ut/u,             non-dimensional speed for wall functions 

u=(||/)w
1/2,       friction speed 

y                          normal-to-surface distance 

y+=yu/,             normal-to-wall dimensionless coordinate for wall functions 

y*=𝐶𝜇
1 4⁄

√𝑘𝑦/𝜈,  k-based normal-to-wall dimensionless coordinate for wall functions 

Greek letters 

                          dissipation rate of turbulence production 

http://www.ijstre.com/


Rough Wall Kolmogorov Length-Scale Proposal 

Manuscript id. 752206930                                 www.ijstre.com                                         Page 8 

 =Cp/Cv,            specific heat ratio 

0.41,               von Karman constant 

                         dynamic molecular viscosity 

t                                     dynamic eddy viscosity 

=/,                kinematic molecular viscosity 

t =t/,              kinematic eddy viscosity 

                         density 

                         shear stress 

subscripts 

1                         denoting 1st off-wall computational point 

                        freestream conditions 

c                         corrected for compressibility effects 

Kol                     of Kolmogorov 

t                          turbulent or tangential  

w                        at wall 
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Appendix: BASIC SUBLAYER/LOG-LAYER RELATIONSHIPS 

 

A. Logarithmic layer 

𝑘 =  𝑢𝜏
2/√𝐶𝜇 , 𝑢𝜏 = √(𝜏 𝜌⁄ )𝑤                                                                                                             (A1) 

𝜀 =   𝑢𝜏
3/(𝜅𝑦)                                                                                                                                       (A2) 

𝜈𝑡 = 𝜅𝑦𝑢𝜏                                                                                                                                             (A3) 

                 𝑆 = 𝑢𝜏/(𝜅𝑦)                                                                                                                                                          (A4) 

Kolmogorov velocity scale: ne( )
1/4

= ky nS3( )
1/4

                                                                              (A5) 

Realizable time-scale: 𝑇𝑡 =
𝑘

𝜀
=

𝜅𝑦

𝑢𝜏√𝐶𝜇
                                                                            (A6) 

𝑅𝑦 = y+ /C1/4

m                                                                                                                                                     (A7) 

𝑅𝑡 = 𝐶𝜇
−3/4

𝜅Ry                                                                                                                                                     (A8) 
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𝑢+ = 𝑙𝑛 (𝑒𝐵𝑦+1/𝜅
) , 𝐵 = 5.5, 𝜅 = 0.41                                                                                        (A9) 

The above assumes that fμ=1 in the expression 𝜈𝑡 = 𝐶𝜇𝑓𝜇𝑘2/𝜀. 

B. Viscous sublayer 

𝑢+ = 𝑦+                                                                                                                                             (B1) 

𝑦+ = √
𝑦

𝜈
(

𝑘

𝐴𝑘
)

1/4

 , 𝐴𝑘 ≅ 0.0266                                                                                                          (B2) 

𝑘 = 𝐴𝑘(𝑢𝜏𝑦+)2 = 𝐴𝑘𝑢2                                                                                                                   (B3)                                                                                                                                                                     

𝜀 =
2𝐴𝑘𝑢𝜏

4

𝜈
                                                                                                                                                          (B4) 

𝜈𝑡 =  𝐶𝜇𝐴𝜇

𝐴𝑘

√2
𝜈𝑦+4

,   𝐴𝜇 ≅ 0.0084                                                                                                             (B5) 

               𝑆 =
𝑢𝜏

2

𝜈
                                                                                                                                                              (B6) 

Kolmogorov velocity scale: (𝜈𝜀)
1
4 = (2𝐴𝑘)

1
4√𝜈𝑆 ≅ 0.48√𝜈𝑆 = (

𝐴𝑘

2
)

1
4

𝑈∞√𝐶𝑓 ≅ 0.34𝑈∞√𝐶𝑓     (B7) 

Realizable time-scale: 𝑇𝑡 =
1

√𝐴𝑘

𝜈

𝑢𝜏
2                                                                                                             (B8) 

𝑅𝑦 = √𝐴𝑘𝑦+2
                                                                                                                                 (B9) 

𝑅𝑡 =
𝐴𝑘

2
𝑦+4

=
𝑅𝑦

2

2
                                                                                                                        (B10) 

C. General ε formula (based on the above) 

𝜀 = 2𝐴𝜀

𝑘2

𝜈𝑅𝑦(1 − 𝑒−𝐴𝜀𝑅𝑦 )
                                                                                                                          (C1) 

𝐴𝜀 =
𝐶𝜇

3 4⁄

(2𝜅)
= 0.2                                                                                                                                           (C2) 

𝑅𝑦 = 𝑚𝑖𝑛{𝐶𝜇
−1/4

𝑦+, √𝐴𝑘𝑦+2
}                                                                                                                   (C3) 

𝑜𝑟 

𝑅𝑦 = 𝑚𝑎𝑥{√2𝑅𝑡 , 2𝐴𝜀𝑅𝑡 }                                                                                                                           (C4) 
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