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ABSTRACT:  We consider a real-time multi-server system with identical servers (such as machine controllers, 

unmanned aerial vehicles,overhearing devices, etc.) which can be adjusted/programmed for different types of 

activities (e.g. active or passive). This system provides a service for real-time jobs arriving via several channels 

(such as assembly lines, surveillance regions, communication channels, etc.) and involves maintenance. We 

perform the worst case analysis of the system working under maximum load with preemptive priorities assigned 

for servers of different activity type. We consider a system with separate queue to each channel. Two models 

with ample maintenance teams and shortage of maintenance teams are treated. We provide analytical 
approximations of steady state probabilities for these real-time systems and check their quality. 
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I. Introduction 
Real-time systems (RTS) are imbedded in modern technological structures, such as production control 

systems, telecommunications systems, self-guided missiles, radars, aircraft, reconnaissance, etc. 

According to Stankovic [1]: “real time systems are thosesystems  that  produce  results   in  a  timely  

manner”, i.e. an action performed out of time constraints (too early or too late) may be useless, or harmful – 

even if such an action or computation is functionally correct.  

Input and output of RTS are mostly uncertain or incomplete. Many of RTS include therefore stochastic as 

well as dynamic components.  

There exists a rich literature covering various real time models.  

We will focus on RTS with a zero deadline for the beginning of job processing. In these systems, jobs are 

processed immediately upon arrival, conditional  on  system   availability.  That   part  of  the  job  which  is  not   

processed  immediately is lost  forever, and queueing of jobs (or their parts) in  these systems is impossible.  

The following works study this type of RTS. Kreimer and Mehrez  ([2], [3]) proved  that the non-mix policy 

maximizes the availability of a multiserver single-channel RTS involving preventive maintenance and working 

in general regime with any arrival pattern under consideration and constant service and maintenance times. In 
[4] and [5] multi-server and multi-channel RTS (with ample and limited number of maintenance facilities 

respectively), working under maximum load regime were treated as finite source queues ([6]). In [7] various 

performance  measures for RTS with  arbitrary number of  channels operating under a maximum load regime 

were studied. In [8], [9] and [10] multi-server and multi-channel RTS working in general regime were 

presented. 

 

In [11] we have shown that even very large number of servers  in RTS with ample maintenance facilities does 

not guarantee the maximum system availability, and optimal routing probabilities were computed analytically 

(for exponentially distributed service times) and via Cross Entropy (CE)  [12],[13], [14] simulation approach 

(for generally distributed service times). These results were extended for RTS with limited maintenance 

facilities in [15].  

    RTS with priorities were studied in [16], [17], [18] (preemptive) and [19]  (non-preemptive) correspondingly.  
In [16] a multi-server and multi-channel RTS with separate queues of servers for each channel and preemptive 

priorities was studied and a set of balance linear equations  for steady-state probabilities was obtained. 

Unfortunately, these equations do not have analytical product-form solutions. 

In [19] several approximations methods, using the modifications of techniques proposed in [20], [21]were 

tested, and the best one was chosen. 
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The work presented here provides analytical  approximations (based on the best method proposed in [18]) of 

steady state probabilities for RTS with separate queues of servers for each channel and preemptive priorities. 

We compare the approximation results with exact values of steady state probabilities and system performances. 

 
The paper is organized as follows: In Section 2, the description of the model with  preemptive priorities is 

presented. In Section 3 balance equations (see [16]) for models with ample maintenance teams and shortage of 

maintenance teams are presented. Section 4 provides analytical approximations for these models. In Section 5 

some numerical results are presented. Finally, Section 6 is devoted to conclusions. 
 

II. Description of the model 
 

The most important characteristics of RTS with a zero deadline for the beginning of job processing are 

summarized in [8]. A real-world problem  was studied in [16]. Here we provide the formal description of RTS 

from [16]. 

The system consists of  r identical channels. For proper performance each channel needs exactly one fixed 
server at any moment (worst case), otherwise the information in this channel (at this specific moment)  is lost. 

There are N servers (which are subject to breakdowns) in the system. A server, which is out of order, needs iR

time units of maintenance. After repair a fixed server may be of u-th type of quality(u=1,…,m) and is assigned 

to the v-th channel with probability vup , , (u=1,…,m;v=1,…,r). These probabilities can be used as control 

parameters. Only after the repair is completed, the quality control procedure determines the quality type of  

fixed server. The fixed server  ofu-th type assigned to v-th channel is operative for a period of time vuS ,  before 

requiring iR  hours of repair. vuS ,  and iR areindependent exponentially distributed random values with 

parameters vu,  (u=1,…,m; v=1,…,r) and   respectively. It is assumed that there are K  identical maintenance 

teams in the system. Each team can repair exactly one server at a time. We will consider two models: 1) with 

ample maintenance facilities ( NK  ) so that all N servers can be repaired simultaneously if necessary, and 2) 

with shortage of maintenance facilities (K<N), in which case some of broken servers will wait for maintenance. 

The duration times Ri
of repair are i.r.v. exponentially distributed with parameter  , which does not 

depend on the quality type of the server (neither before nor after the repair). After repair, the fixed server will 
either be on stand-by or operating inside the channel. There is a separate queue of servers to each channel. 

We assume that servers of the first kind of quality type have the highest priority, servers of the second 

quality  type are the next priority in line, and so on. Finally, servers of the m-th quality type have the lowest 

priority. Server operating in any channel is interrupted, if another fixed server of higher priority type arrives 

from maintenance. When the operating server must be repaired, the fixed server with highest priority takes its 

place. 

   The system works under a maximum load (worst case) of nonstop data arrival to each channel). Thus, there 

exist a total of exactly r jobs in the whole system at any moment, and the nonstop operation of each channel is 

needed.  

If, during some period of time of length T ,there is no fixed server to provide the proper operation of the 

channel, we will say that the part of the job  of length T  is lost forever. 

III. Balance equations for steady state probabilities 

In [15] the state of the system was defined as 
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λu,v = λpu,v, the rate of assignments of fixed servers of u-th activity type to the v-th channel. 

We will consider two models: 1) with ample maintenance facilities ( NK  ); and 2) with shortage of 

maintenance facilities (K<N). 

We will focus on the case Nr  , otherwise all fixed servers will be busy and preemptive priority regime, 

therefore, will not work. 

3.1 Model with ample maintenance facilities 
 

We assume that there are ample identical maintenance facilities NK   available to repair  allN servers 

simultaneously, if needed. Thus, each broken server enter maintenance facilities without delay. This model was 

studied, and the following set of linear equations for steady state probabilities was obtained in [16]. 
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3.2 Model with shortage of maintenance facilities 

Here we assume that there are K ( NK  ) maintenance facilities in the system. Thus, a shortage of 

maintenance facilities is possible when there are more than K broken servers in the system. In that case, the 
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broken server waits for maintenance. This model was studied in [16], and the following set of linear balance 

equations for steady state probabilities was obtained. 
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IV. Approximations 
 

    We apply the Method 3 developed in [18] to get analytical approximations for solutions of equations (1)-(2). 

This method is a combination of the methods presented in [20] and [21]. These approximations instead of 

Global Balance Equations ((1)-(2) or (3)-(4)) use Local Balance Equations, and  provide analytical product 

form solutions (see [6]) for steady state probabilities. We will use an RSS (root of sum of squares) criteria in 

order to evaluate the quality of these  approximations: 
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 are exact numerical solution (of equations (1)-(2) or (3)-(4)) and 

analytical approximation respectively.  

Then analytical approximations of steady state probabilities for the model with ample maintenance teams and 

separate queues of servers to each channel are as follows. 
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The corresponding analytical approximations of steady state probabilities for the model with shortage of  

maintenance teams and separate queues of servers to each channel are as follows. 
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V. Numerical results 

In this Section, we present some numerical results, showing the quality of our approximations in terms of RSS. 

Table 1 contains exact values of steady state probabilities for the model with ample maintenance facilities 

obtained from equations (1)-(2) presented in [16]. 

We consider the model with following parameters r = 2; N = 3; λ = 28; m = 2; μ11 = 8, μ21 = 10, μ12 = 6, μ22 = 

12; p11 = 0.21, p21 = 0.29, p12 = 0.14, p22 = 0.36; K ≥ N . 

 

Table 1. Steady state probabilities - exact numerical solution of equations (1)-(2) 

P(n) n11,n21 P(n) n11,n21 P(n) n11,n21 P(n) n11,n21 

 n12,n22  n12,n22  n12,n22   n12,n22 

0.045 1,1 0.003 1,0 0.003 0,0 0.008 0,0 

  0,1   2,0   3,0   0,0 

0.021 1,1 0.044 0,1 0.009 1,0 0.027 0,0 

  1,0   0,2   0,0   0,1 

0.046 0,2 0.038 0,1 0.028 0,1 0.005 0,0 

  0,1   1,1  0,0   1,0 

0.024 0,2 0.007 0,1 0.024 1,0 0.058 0,0 

  1,0   2,0   0,1   0,2 

0.007 3,0 0.009 2,0 0.005 1,0 0.029 0,0 

  0,0   0,0   1,0   1,1 

0.034 2,1 0.039 1,1 0.051 0,1 0.004 0,0 

  0,0  0,0   0,1   2,0 

0.084 1,2 0.060 0,2 0.017 0,1 0.048 0,0 

  0,0   0,0   1,0   0,3 

0.048 0,3 0.012 2,0 0.030 1,0 0.087 0,0 

  0,0   0,1   0,2   1,2 

  0.005 2,0 0.016 1,0 0.027 0,0 

    1,0   1,1   2,1 

 
Table 2 contains their analytical approximations counterparts for the same parameters: r = 2; N = 3; λ = 28; m = 

2; μ11 = 8, μ21 = 10, μ12 = 6, μ22 = 12; p11 = 0.21, p21 = 0.29, p12 = 0.14, p22 = 0.36; K ≥ N . 
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Table 2.Steady state probabilities – analytical approximations. 

P'(n) n11,n21 P'(n) n11,n21 P'(n) n11,n21 P'(n) n11,n21 

 n12,n22  n12,n22  n12,n22   n12,n22 

0.021 1,1 0.004 1,0 0.005 0,0 0.016 0,0 

  0,1   2,0   3,0   0,0 

0.017 1,1 0.053 0,1 0.012 1,0 0.040 0,0 

  1,0   0,2   0,0   0,1 

0.051 0,2 0.043 0,1 0.038 0,1 0.007 0,0 

  0,1   1,1  0,0   1,0 

0.041 0,2 0.013 0,1 0.020 1,0 0.067 0,0 

  1,0   2,0   0,1   0,2 

0.007 3,0 0.009 2,0 0.006 1,0 0.020 0,0 

  0,0   0,0   1,0   1,1 

0.019 2,1 0.026 1,1 0.064 0,1 0.004 0,0 

  0,0  0,0   0,1   2,0 

0.046 1,2 0.061 0,2 0.019 0,1 0.056 0,0 

  0,0   0,0   1,0   0,3 

0.049 0,3 0.012 2,0 0.017 1,0 0.111 0,0 

  0,0   0,1   0,2   1,2 

  0.004 2,0 0.013 1,0 0.013 0,0 

    1,0   1,1   2,1 

 

Corresponding RSSE=0.068  (between results of Table1 and Table 2) 

 

Table 3 contains exact numerical values as well as analytical approximations of several Performance 

characteristics (averages) for the same model: r = 2; N = 3; λ = 28; m = 2; μ11 = 8, μ21 = 10, μ12 = 6, μ22 = 12; p11 

= 0.21, p21 = 0.29, p12 = 0.14, p22 = 0.36; K ≥ N . 

Table 3. Exact values and analytical approximations of Performance characteristics (averages) 

Analytical 

Approximations 

Exact 

Value Performance characteristic 

2.461 2.542 Nu. of fixed servers L 

1.142 1.308 Nu. of fixed serversat channel 1 )1(N  

1.319 1.233 Nu. of fixed serversat channel 2 )2(N  

0.646 0.748 Nu. of fixed serversof type 1 1N  

1.815 1.793 Nu. of fixed serversof type 2 2N  

0.282 0.412 Nu. of fixed serversof type 1 at channel 1 1,11,1 QL   

0.860 0.896 Nu. of fixed serversof type 2 at channel 1 1,21,2 QL   

0.364 0.336 Nu. of fixed serversof type 1 at channel 2 2,12,1 QL   
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0.955 0.897 Nu. of fixed serversof type 2 at channel 2 2,22,2 QL   

0.661 0.725 Availability at channel 1 1Av  

0.696 0.650 Availability at channel 2 2Av  

0.688 0.688 Availability of the system  Av 

 

VI. Conclusions 
We have found a good analytical approximations for RTS with a separate queues for each channel, and 

preemptive priorities (for servers of different quality type) working under maximal load. Two models with 

ample maintenance teams and shortage of maintenance teams were treated and numerical results showing the 

quality of approximations are provided. 
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