
International Journal of Scientific and Technical Research in Engineering (IJSTRE)

www.ijstre.com Volume 3 Issue 4 ǁ May 2018.

Manuscript id. 5026221 www.ijstre.com Page 1

Usingthe Internet for Standalone Secure Software

Carlos Gonzalez 

Abstract—This paper describes the use of the Internet as a feature to enhance the security of our software that is going to be
distributed/sold to users potentially all over the world. By placing in a secure server some of the features of the secure
software, we increase the security of such software. The communication between the protected software and the secure
server is done by a double lock algorithm. This paper also includes an analysis of intruders and describes possible responses
to detect threats.

Keywords—Internet, Secure software, threats, Cryptography process.

I. INTRODUCTION

HISpaper describes how we canuse the Internet in the design and implementation of secure software. This is

done by having in a secure server some of the more sensitive software features of the secure software. This

secure software will communicate and execute the sensitive features now located in the secure server via the

Internet. This process will provide procedures to increase the security of ourstandalone software when this

software is distributed and used by users all over the world.

 When designing secure software, it is difficult to gage and prevent all possible outcomes when the user is

in complete control of all your software. The only possible defenses are imbedded into the software leaving this

software to its own self-protect features [1],[6]-[8].

Internet servers today have improved their security and provide reasonable security for users. If we assume

that we have a server, and that such a server is under our control and is using server protection technology, it is

therefore better protected than a software program in the hands and control of a user. Then, using the Internet to

host part or parts (the most sensitive, crucial, secret, etc.) of the delivered software is a sensible idea.

II. REQUIREMENTS

Following is a list of requirements for the use of this proposed technology and methodology:

• Internet Access:It is required for the use of this proposed technology and methodology that our secure

software be able to have access and make use of the Internet. If this is not the case, this technology will not

work.

• Hard Real-time Requirements: Knowing that communications over the internet do not guarantee a set

response time. The response times may vary over-time. Therefore, any software requiring strict real-time

response times will not be a candidate to use the Internet as an internal security feature.

III. METHODOLOGY

We have several advantages in using the Internet. One such advantage is having most of the critical or

sensitive code protected in a secure server under our control [3], [4].

From a design point of view, first it is necessary to decide what we need to send to the secure server.

A. Secure Server Features

Here is a partial list of the features that can be in our secure server, which we will call “Secure Server

Features” (SSF) [2], [5]:

• The most sensitive algorithms or procedures.

• The most crucial algorithms or procedures.

• The most secretalgorithms or procedures of the software.

• The most important data (i.e. all or part of a database).

It is understood that our secure software communicates with the secure server using the Internet via secure

protocols. These protocols like https, and other crypto algorithms will provide security for the communications

of the server to/from the secure software.

Carlos Gonzalez is with the Universidad Autonoma de Coahuila, Arteaga Mexico (e-mail:gonzalezc757@gmail.com).

T

Usingthe Internet for Standalone Secure Software

Manuscript id. 5026221 www.ijstre.com Page 2

B. Security Risks

Following is a list of security risk types for the software features that are identified as security risks.

• Maximum. These features are very high risk. If a feature is known to any non-authorized user, the result

could be the loss of life, materials, or security integrity.

• High. These features, if known by a non-authorized users, may cause for example economic losses for the

company/country/individual, or divulge valuable proprietary information.

• Medium.For these features, we prefer no access to non-authorized users, but if it happens, the situation is

not catastrophic.

• Confidential. These features utilize algorithms or procedures publically known, but it is better for the

overall security of the system to keep them hidden.

C. Simple Algorithm

A simple algorithm and methodology that can be used is as follows:

• At the entrance of the secure software, the user is going to be required to be authenticated, and this is done

by the secure software sending to the server the user’s password (encrypted) and waiting for a response, which

will be in the form of a token with information generated by the server that could be for example a combination

of the user ID and password (see complete communication algorithm below).

• With the returned token, the secure software will add this token when calling to perform any of the Secure

Server Features existent in the secure software.For example, an algorithm calculation, when the server receives

this request, it checks to see if the sent token (the one returned with the password authentication) is the same as

the token currently received. If the tokens are not the same, an “Enemy on Board” (EOB) signal is sent back to

the secure software. If the tokens agree, then the algorithm will be executed, and a result is sent back to the

secure server. In the following sections of this paper, we will explore some of the actions that the secure server

can take having detected an EOB signal.

• With the previous actions, at least we know that no answer from the server will go out un-authenticated.

The decision of which features will be in the secure server (the selection of the SSF) will be made at the time

of the software design and development. The designers will have basically three options for each of the selected

at risk features:

• Have the features in the server be static. The code in the secure software will be hard coded for calls to the

secure server whenever that feature is called (executed). In other words, if a feature like an algorithm is decided

to reside in the secure server, then all the call in the secure software of this algorithm will be calls for the remote

execution of this algorithm in the remote secure server, which is the only place where the executable code of

such algorithm exists.

• Have the features in the server be dynamic. The executable code of the feature resides in the secure

software, and a copy of such an executable code will reside in the secure server. The idea here is that if the

software detects a situation of risk, then it will immediately erase the executable code for the feature, and

replace it with a call to the secure server to execute from now on this feature remotely from the secure

server.The advantage of this dynamic mode is that when the secure software is detected to be used by friendlies,

then it will not need to interact (spend time) communicating over the Internet. The disadvantage is that we need

to be sure of the type of user of our software, and when at risk, have the time to do the erasing and changing of

all the features using this mode.

• Have all the security features located in the server. The Maximum and High security type features will

never be removed from there. The other features may migrate to the secure software when the secure software

feels with high certainty that the user is a friendly user. The first features to migrate will be the confidential

features and the medium type last.

In case of any migration from the server to secure software is required, this will be done following cyber-

ecological procedures. This concept is explained later on.

We propose that on the first user interaction with the secure software, the secure software should contact the

secure server and establish a user ID, maybe set up a cookie. On all other interactions, it uses the user ID to

communicate with the secure server. We recommend establishing a procedure to change the user ID (i.e. after

every n interactions, at random intervals, etc.). This is done for security purposes to make sure the user was not

hacked himself/herself and some other user has access to their ID without their knowledge. All the changes

tothe ID will be done transparently and without the user knowledge.

Once the user ID is set, the next question is: Is the user type and location well established?

• Yes, the location and user type have been properly established, then:

Usingthe Internet for Standalone Secure Software

Manuscript id. 5026221 www.ijstre.com Page 3

o If it is a friendly location and a non-threatening user, keep the secure software as it is now.

o If either the location is unfriendly or the user type is a foe, implement all the proper responses to such a

threat (i.e. if dynamic features are present, react as described above)? The response should include a signal

to the secure server of the responses taken.

• No, either the location has not been properly established or the user type not clearly defined. Keep the

system as it is now, and keep taking user and location measurements.

If the Internet usage is part of self-protected software [9], [10], then we will send to the secure server all the

information we have about the user and the location of the software. The IP address could give good location

information, except in the case of virtual IPs. At the moment, there are no good technical solutions for the

virtual IP problem. What we propose is to have a list of the known virtual IP providers, and make the secure

software unworkable whenever any of these virtual IPs try to use our secure self-protected software. It is not a

complete or clean solution, but it will help in many cases.

D. Communications Process

The software and the Secure Server communicates via a two locks algorithm. This algorithm works as

follows:

• When the software needs to communicate with the Secure Server, it first sends an encrypted request to the

Secure Server using the Public Key of the Secure Server (PSS)

• The Secure Server decrypts the request using his secret key (SSS). Once this server sees that it is a request

to start communication, it generates an ID for the message.

• The Secure server encrypts the generated ID for the software using the software public key (PSO), and

sends the message to the software.

• Upon receiving the response from the Secure Server, the software decrypts the message using its secure

key (SSO), and saves the value of the ID sent by the Secure Server.

• The software now generates a message which contains the sent ID, and the processing request M encrypted

using the secure server key (PSS).

• The Secure Server decrypts the message using the user’s secure key (SSO). This message contains an ID,

and the request for processing M. If the IDs match (i.e. the one sent and the one received are the same), it

proceeds to do the processing of request M.

• Once the processing of M is done, it proceeds to generate an answer back for the software. The message

will contain the ID, and the results of the processing N. This information is encrypted using PSO and sent to the

software.

• The Software receives the message from the Secure Server and decrypts it using the user’s SSO. If the ID

coincides, then the software proceeds to manipulate and continue with the response N. This concludes the

algorithm

cycle.

Usingthe Internet for Standalone Secure Software

Manuscript id. 5026221 www.ijstre.com Page 4

Fig. 1 Software and Secure Server Communication

Figure 1. shows a diagram of the previously describedCommunications Process algorithm.

IV. INTRUDERS

We define four types of intruders:

Level-1: A casual attacker. The attacker has the software and he/she is not technically knowledgeable to

retrieve data or algorithms from the machine code software.

Level-2: A hacker attack. This attacker has the knowledge to retrieve data or algorithms from the

machine code sources of the software. Attacks of this kind need to have security procedures used for the

development of code.

Level-3: An institution attack. This attack is done by an institution with all the resources of such an

institution. The most common cases are industrial espionage

Level-4: A government attack. This attack is done by a government agency with all the resources

(technical and legal) available for such an agency.

To define the level of user’s threat, we have to evaluate all the information available about the user and

the current location.

When analyzing the user's threat level we should keep the following in mind:

Level-1: A casual attacker. A minimum of security is needed.

Level-2: A hacker attack. This intruder may or may not have initial plans for economic gains for the

intrusion. In most cases, it is the intellectual challenge that motivates this intruder (i.e. hacker), but economic

gains may not be very far behind.

Level-3: An institution attack. The economic gains are the main reason for the intrusion. In most cases

with enough time and money, any secure self-protected software may be cracked. Therefore, the developing

team should always work with the goal of making the intruder's effort needed to break the secure code high

enough for them not to be cost effective.

Level-4: A government attack. Since in most cases with enough time and money any secure self-

protected software may be cracked, it is recommended that techniques for intruder detection [11] and [12], as

well as the user detection described in this paper with the respective actions to take (covert and not-covert) be

Usingthe Internet for Standalone Secure Software

Manuscript id. 5026221 www.ijstre.com Page 5

included in the secure code This level of protection requires the use of the most sophisticated security

algorithms.

V. THREATS AND ACTIONS

A. Threats

To define the level of user's threat we have to evaluate all the information available about the user and the

current location of the device that is running the secure software.

Following is a list of situations that help us determine the level of user threat:

1. If we detect that our software has been modified (i.e. the routine to use the GPS was by-passed), then we

know that we are at least at threat level-2. We suggest having at least two different locations inside our

software where we do this checking.

2. Sometimes our currentgeographical location can tell us that the level is 3 or 4. In general it is very difficult

to differentiate between level 3 and 4. Therefore, if our software is expected to survive a level 4 attack,

then even if we have a level 3 threat, we should treat it as level 4. If on the other hand the maximum level

we are trying to protect against is level 3 (not a national security threat), then our reaction to the threat

could be economically-based (see actions below).

3. If our device has a heartbeat component and the heartbeat device reports an anomaly. The threat should be

level 3 or 4.

4. If our computer is connected to any foreign device [10] (like a foreign type of computer, strange

keyboards, printers, etc.). The threat should be level 3 or 4.

5. If we are at a non-friendly location. Minimum threat level is 2. Here the software can be designed to

differentiate between non-friendly (i.e. Venezuela), bad-non-friendly (i.e. Iran) and very-bad-non-friendly

(i.e. China), and set the threat accordingly.

6. If we are at a friendly location, and there are no signs of tampering, then we can consider at this time the

user to be friendly and of no-threat.

B. Actions

General rules of what to do if the secure self-protected software has detected a threat [10]:

• Act accordingly to the defined rules of the self-protected software.

• Notify the secure server of such a threat, including the response given to such a threat.

• Ask the secure server to send back a signal responding to the threat, and either ok or give new response

orders. This is done because in all cases, the secure server is the one up-to-date on threats and responses to

threats. All individual secure self-protected software will update their response to threats periodically.

On the following actions we are going to suggest a list of possible actions to the given scenario. The actions

are:

1. Minimum: This is the minimum action that should be taken.

2. Mild: An action that recognizes the threat but acts in a manner that the damage to the user is minimal.

3. Strong: Act as violently as possible against the user.

Independently of the design decision of location and migration strategies, the actions to take will be:

• For a Level-1 casual attacker on any location, we recommend taking all or some of the following actions:

1. Erase all files related to our software located in the user’s secure software (Mild).

2. Block any future connections of the user’s secure software to our server. Use user’s IP and/or user’s ID

(Minimum).

3. Erase most of the user files (Strong).

4. Send a signal home reporting the issue (Minimum).

5. Display a message to the user saying that a malicious virus has taken control (the idea is to scare the user

and mislead him/her on the source of the problem) (Strong).

• For a level-2 hacker attack when we are at a friendly location and are guarding a maximum level-2 attack,

we recommend taking all or some of the following actions:

1. Same as actions 1-3 of casual attacker.

2. Display a message to the user saying that his/her actions are being reported to the FBI, CIA, Interpol, etc

(Mild).

• If on the other hand a hacker attack is detected, and we are guarding against Level-3 or Level-4 attack, or

we are at an unfriendly location, we propose the following actions, and that most of the actions be done

covertly.

Usingthe Internet for Standalone Secure Software

Manuscript id. 5026221 www.ijstre.com Page 6

1. Change the software slightly (these actions should be determined at the design stage of the secure software)

so it produces results, but the wrong results (Strong).

2. Insert a malicious virus that spreads to all the contacts of this user (Strong).

3. Start a time bomb to damage the local equipment. The due time could be up to a couple of days in order to

give time in case the threat changes to a friendly location. If a physical bomb is not possible, then at the due

time destroy as much software and information as possible. The destruction of the local equipment should

never include human lives (Strong).

VI. CYBER-ECOLOGY

Cyber-Ecology refers to both the scientific analysis and study of the interaction among cyber users and their

environment, and the political movement that seeks to protect cyber-space, especially from pollution (i.e.

garbage data, viruses, frivolous usage, etc.) [13]-[16].

With this in mind, our model will try to use the Internet at such times at which the load causes less problems

for us and for others. In other words, we will use whenever possible the loading and downloading from the

server at times when the traffic in the Internet is at low points.

Our software will be monitoring Internet traffic for the specific user and select the best times to do the loading

or downloading.

VII. CONCLUSIONS

The main contribution of this paper is the explicit use of a web server to protect some of our software

that is going to be used as a standalone software by all kinds of users in many countries around the world. We

defined an encryption processing algorithm that will increase the security of the software process. We also

outline some of the threats and actions that could be taken for different scenarios.

Looking at the state of the cyber world as it is today, we can safely say that the proposed methodology

will not work for all cases of secure software. We have stated that for applications that need a hard response

time, this methodology will not work. But it should also be clear that as the speed of the Internet increases more

and more, and if in the future there are policies and procedures for which a response time is guaranteed, then

this technology becomes a very basic option.

If in the future the speed of the Internet is not an issue for the use as a software safety methodology,

then we have to concentrate our security worries and research in the transmission of the data [17], [18] between

the server and the secure software. Also, we have to include in these concerns and research, the security of the

web server [2], [19]-[21].

REFERENCES

[1] Intel Corp., “Intel® Data Protection Technology for Transactions

“,http://www.intel.com/content/www/us/en/embedded/technology/security/secure-payment-transactions/overview.html, Viewed Jun

2016

[2] Microsoft,”Secure Windows Server”, https://technet.microsoft.com/en-us/library/dd548350(v=ws.10).aspx, Viewed June 2016

[3] Microsoft, “”What's New in DHCP”, https://technet.microsoft.com/en-us/library/dn765482.aspx,Viewed June 2016

[4] Hewlett Packard, ”HP Advanced Memory Protection technologies”, ftp://ftp.hp.com/pub/c-

products/servers/options/c00256943.pdf,technology brief, 5th edition, April 2008

[5] Trend Micro, “Devising a Server Protection Strategy with Trend Micro”, http://www.trendmicro.com/cloud-

content/us/pdfs/business/white-papers/wp_devise-a-server-protection-strategy.pdf, January 2012

[6] YuanE., et al., “A Systematic Survey of Self-Protecting Software Systems”, ACM Transactions on Autonomous and Adaptive Systems

(TAAS), Volume 8 Issue 4, January 2014, Article No. 17

[7] Lavasoft, “Potentially Unwanted Program Self-Protection

Technologies”,http://lavasoft.com/mylavasoft/securitycenter/whitepapers/potentially-unwanted-program-selfprotection-

technologies,October 2014

[8] Lavasoft, “Potentially unwanted programs that use rootkit

components “,http://lavasoft.com/mylavasoft/securitycenter/whitepapers/pups-with-rootkit, September 2014

[9] Feiman Joseph, “Runtime Self Protection: A Must Have, Emerging Security Technology”, Gartner Group, 24 April 2012

[10] [10]Gonzalez C. “User Detection in Secure Self-Protected Software”, Submitted to ROMJIST Sep 2015

[11] Denning, Dorothy E., "An Intrusion Detection Model," Proceedings of the Seventh IEEE Symposium on Security and Privacy, May

1986, pages 119-131.

[12] Scarfone, Karen; Mell, Peter. "Guide to Intrusion Detection and Prevention Systems (IDPS)". Computer Security Resource Center

(National Institute of Standards and Technology) (800-94) (February 2007).

[13] JorgensenJ., et al., “ Cyber Ecology: Looking to Ecology for Insights into Information Assurance”, Proceedings of DISCEX 2001,

IEEE,287-296

[14] Gorman SP., and Malecki EJ. , ”Fixed and fluid: stability and change in the geography of the Internet”,Telecommunications Policy 26

(7), 389-413

[15] GuptaAjayand Sekar R.,” An Approach for Detecting Self-Propagating Email Using Anomaly Detection”,Recent Advances in

Intrusion Detection, 2003 – Springer,

http://www.intel.com/content/www/us/en/embedded/technology/security/secure-payment-transactions/overview.html
https://technet.microsoft.com/en-us/library/dd548350(v=ws.10).aspx
ftp://ftp.hp.com/pub/c-products/servers/options/c00256943.pdf
ftp://ftp.hp.com/pub/c-products/servers/options/c00256943.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/business/white-papers/wp_devise-a-server-protection-strategy.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/business/white-papers/wp_devise-a-server-protection-strategy.pdf
http://dl.acm.org/author_page.cfm?id=81100116433&coll=DL&dl=ACM&trk=0&cfid=631223097&cftoken=64024901
http://lavasoft.com/mylavasoft/securitycenter/whitepapers/potentially-unwanted-program-selfprotection-technologies
http://lavasoft.com/mylavasoft/securitycenter/whitepapers/potentially-unwanted-program-selfprotection-technologies
http://lavasoft.com/mylavasoft/securitycenter/whitepapers/pups-with-rootkit
http://lavasoft.com/mylavasoft/securitycenter/whitepapers/pups-with-rootkit
http://lavasoft.com/mylavasoft/securitycenter/whitepapers/pups-with-rootkit
https://scholar.google.com.mx/citations?view_op=view_citation&hl=en&user=9G6MyJgAAAAJ&citation_for_view=9G6MyJgAAAAJ:UeHWp8X0CEIC

Usingthe Internet for Standalone Secure Software

Manuscript id. 5026221 www.ijstre.com Page 7

[16] WangY., et al, “Software Diversity Measurement for Security Evaluation: An Ecological Approach”, I. J. Computer Network and

Information Security, 2015, 4, 37-43

[17] Mukherjee B. , Heberlein L.T, Levitt K. N., ”Network Intrusion Detection”, IEEE Network May 1994

[18] Creston News Advertiser, “ Protect yourself in the online, social network community”, 11 Feb 2011.

http://www.crestonnewsadvertiser.com/articles/ara/2011/02/11/8044960708/index.xm

[19] ScarfoneKaren, Mell Peter., "Guide to Intrusion Detection and Prevention Systems (IDPS)", Computer Security Resource Center

(National Institute of Standards and Technology) , February 2007

[20] Microsoft, "Improving Web Application Security: Threats and Countermeasures", msdn.microsoft.com. Viewed June 2016

[21] University of Alabama at Birmingham Business Program."Information Security: A Growing Need of Businesses and Industries

Worldwide".http://businessdegrees.uab.edu/resources/infographics/mis-security-infographic/, Viewed May 2016.

http://www.crestonnewsadvertiser.com/articles/ara/2011/02/11/8044960708/index.xml
https://msdn.microsoft.com/en-us/library/ms994920.aspx
http://businessdegrees.uab.edu/resources/infographic/mis-security-infographic/
http://businessdegrees.uab.edu/resources/infographic/mis-security-infographic/
http://businessdegrees.uab.edu/resources/infographic/mis-security-infographic/
http://businessdegrees.uab.edu/resources/infographics/mis-security-infographic/

