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ABSTRACT : Magnetohydrodynamic (MHD) flow of viscous electrically conducting incompressible fluid 

through vertical plates has been studied in this paper. We have investigated the steady incompressible viscous 

fluid flow along y-axis through the vertical plates distanced from x = -D to x =D, the plate at x = -D is 

stationary while the plate at x= D is moving and applied the inclination angles of magnetic field to the fluid 

flow. MHD flows find application in geophysics, astrophysics. Engineers employ MHD principles in the design 

of heat exchangers, pumps and flow meters. The equations of the fluid flow have been subjected to dimensional 

analysis and are solved using analytical approaches with the help of   boundary conditions. The findings are 

based on the effects of Hartmann number, angle of inclination, pressure gradient and gravitational force and 

Reynolds number and are presented graphically. It has been found that decreasing the negative values of 

Hartmann numbers leads to increase of velocity profile, the increase of angle of inclination leads to an increase 

of velocity profile, decreasing the negative value of Q leads to increase of velocity distribution and finally the 

increase of the Reynolds number leads to increase of velocity distribution.  

KEYWORDS: Angle of inclination, Hartmann number, Magnetohydrodynamic flow, Reynolds number and Q 

(pressure gradient and gravitational force).  

 

 

I. INTRODUCTION  
Magnetofluiddynamics is the study of the flow of electrically conducting fluids in the presence of magnetic 

field. It unifies in a common framework the electromagnetic and fluid dynamic theories to yield a description of 

the concurrent effects of the magnetic field on the flow and the flow on the magnetic field. 

Magnetofluiddynamics (MFD) deals with an electrically conducting fluid, whereas its subtopics, 

magnetohydrodynamics (MHD) and magnetogasdynamics (MGD) are especially concerned with electrically 

conducting liquids and ionized compressible gases respectively. 

MHD phenomena result from the mutual effect of a magnetic field and conducting fluid flow across it. An 

electromagnetic force is produced in the fluid flowing across a transverse magnetic field and the resulting 

current and magnetic field combine to produce a force that resists the fluid motion. The current also generates its 



Magnetohydrodynamic Flow of Viscous Electrically Conducting Incompressible Fluid Through  

Manuscript id. 513904135  www.ijstre.com  Page 2 

own magnetic field which distorts the original magnetic field. An opposing, or pumping force on the fluid can 

be produced by applying an electric field perpendicularly to the magnetic field [1] [2]. 

Some researchers have done on MHD flows using different channels; Soundalgekar (1979) solved MHD free 

convective flow at vertical plate using Laplace –transform technique. They found that increasing magnetic field 

increases the velocity in heated plate while decrease the velocity in the cooled plate. If the plate is cooled in a 

great low temperature, the velocity increases [3]. Raptis and Singh (1983) investigated the accelerated vertical 

plate and used the Laplace –Transform Technique and discovered that the skin friction decreases due to the 

effects of magnetic parameter. And the increase of magnetic forces decreases the velocity field [4]. Helmy (1998) 

studied MHD free convection past vertical porous plate using perturbation technique. He found that increasing 

magnetic parameter affects velocity and temperature profile decreases [5]. Hazarika (2011) studied the effects of 

variable viscosity and thermal conductivity on heat and mass transfer flow along a vertical plate in the presence 

of magnetic field and found the effects of magnetic field on the velocity and temperature profiles. An increase of 

magnetic field strength decreases the velocity and the temperature of heated plate and increase the temperature 

of cooled plate [6]. R. Lakshmi (2014) studied the numerical solution of MHD flow over a moving vertical 

porous plate with heat and mass transfer and solved the equations using Runge-Kutta fourth order integration 

scheme together with shooting method and he found that increasing Prandtl number results in decreasing the 

velocity field. He also discovered that an increase in the radiation parameter and heat source results an increase 

in the velocity with the boundary layer, also it increases the thickness of the boundary layer. It was observed that 

as the chemical reaction parameter increases, the velocity profiles decreases. The temperature profiles increase 

with an increase of magnetic field parameter which implies that the applied magnetic field tends to heat the 

fluid, and thus reduces the heat transfer from the wall [7]. Nor Raiham Mohamad Asimoni et al (2017) studied 

MHD free convective flow in incompressible viscous fluid past a vertical plate in the presence of magnetic field 

and found that an increase of magnetic field strength will decrease the velocity of fluid flow.  He also found that 

the strength of magnetic field will increase the temperature for cooled plate and decrease the temperature for 

heated plate [8]. Mburu (2016) investigated MHD flow past parallel plates and found that the increase of 

Hartmann number will decrease the velocity, when the angle of inclination is small then the velocity is 

maximum. As the angle of inclination increases then the velocity decreases. They also found that the increase in 

pressure gradient leads to increase in velocity and the increase in Re leads to decrease in velocity and a decrease 

in Re leads to increase in velocity [9]. Thiele (1999) studied MHD fluid flow problems involving spatially 

varying viscosity and investigated its effect on Fluid velocity and Magnetic field. And they discovered that the 

velocity profile is decreased due to high effect of viscosity [10]. 

The steady MHD flow, viscous, incompressible, electrically conducting fluid along heat and mass transfer for 

vertical plates in the presence of the magnetic field has been investigated by a number of researchers. The 

researchers have investigated the incompressible fluid flow past vertical or porous plates with heat and mass 

transfer and some chemical reaction under transverse normal magnetic field. 

We want to investigate the steady incompressible viscous fluid flow along y-axis between two vertical plates 

distanced from x = -D to x =D, the plate at x = -D is stationary while the plate at x= D is moving and apply the 

inclination angles of magnetic field to the fluid flow. The study of the MHD flow problems of electrically 
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conducting fluids is currently receiving considerable interest. For example, because of the continuum the 

universe is filled with widely spaced, charged particles and permeated by magnetic fields and so the continuum 

assumption becomes applicable. Again, in control and re-entry problems, in designing communications and 

radar systems; in developing confinement schemes for controlled fusion.  

     

  

II. EQUATIONS GOVERNING THE FLUID FLOW 

2.1 Equation of Motion 

𝜕⍴

𝜕𝑡
+
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0                                                                                                                                                     (1) 

𝜌  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
  = −

𝜕𝑝

𝜕𝑥
+ 𝜇 𝛻2𝑢 + 𝜌𝑔𝑥 + 𝐹𝑋                                                  (2) 

𝜌  
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
  = −

𝜕𝑝

𝜕𝑦
+ 𝜇 𝛻2𝑣 + 𝜌𝑔𝑦 + 𝐹𝑦                                                   (3) 

𝜌  
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
  = −

𝜕𝑝

𝜕𝑧
+ 𝜇 𝛻2𝑤 + 𝜌𝑔𝑧 + 𝐹𝑧                                                       (4) 

Where  

𝛻2 =  
𝜕2

𝜕𝑥 2 +
𝜕2

𝜕𝑦 2 +
𝜕2

𝜕𝑧2
 And 𝐹𝑥=J X B    𝐹𝑦=J X B        𝐹𝑧=J X B 

2.2 Electromagnetic equations  

These are equations that give the relationship between electric field intensity E, magnetic induction vector B, 

electric displacement D, magnetic field density H, induced current density vector J and the charge density p. 

If the current J is passing through a conductor under a magnetic flux B, then the conductor experiences a force 

perpendicular to both of them and is proportional to their magnitude. The force F is called electromagnetic force 

or Lorentz force and is given by F=J X B        

2.2.1. Maxwell’s equations 
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Maxwell’s equation is a set of four equations that describe the properties of electric field and magnetic field and 

relate them to their sources, charge density and current density 

𝜕𝐵

𝜕𝑡
= −∇𝑋𝐸𝑜𝑟

𝜕𝐻

𝜕𝑡
= −

∇𝑋𝐸

𝜇𝑒
𝑤ℎ𝑒𝑟𝑒𝐵 = 𝜇𝑒H                                                                                                          (5) 

∇XH= J                                                                                                                                                                  (6) 

∇.B=0                                                                                                                                                                     (7)   

∇ ∙ 𝐷 = 𝜌𝑒                                                                                                                                                              (8)                                                                                                            

2.2.2. Ohm’s Law 

The ideal ohm’s law neglects contribution to E for resistivity. The ideal Ohm’s law leads to the magnetic field 

and plasma being frozen into each other so the magnetic topology is preserved. 

J=σ (E +VXB)                                                                                                                                                        (9) 

2.2.3. Induction Equation 

Using the generalized Ohm’s Law and the Maxwell’s equation we obtain the induction equation. 

𝜕𝐻

𝜕𝑡
= 𝜈∇2H + curl  VXH                                                                                                                                                   (10) 

III. SOLUTIONS OF GOVERNING EQUATIONS 
The velocity components u= (0, u, 0) 

The magnetic field components   B= (𝐵0 sin𝛽, 0,0) 

Force F= JXB where J=σ (𝑉𝑋𝐵) 

J=σ (VXB)   J=σ  
𝑖 𝑗 𝑘
0 𝑢 0

𝐵 sin𝛽 0 0
 = −(𝜎𝐵 sin𝛽)𝑢𝒌 

𝐽𝑋𝐵 =  
𝑖 𝑗 𝑘
0 0 −𝜎𝐵 sin𝛽

𝐵 sin𝛽 0 0
𝑢 =(𝜎𝐵2

0 sin2 𝛽) 𝑢𝑱 

Equations (1), (2), (3) and (4) reduce to 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0                                                                                                                                                                    (11) 

𝜌  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
 = −

𝜕𝑝

𝜕𝑥
+ 𝜇 ∇2𝑢 + 𝜌𝑔𝑥 + (𝜎𝐵2 sin2 𝛽)𝑢                                                             (12) 

ρ 
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
 = −

𝜕𝑝

𝜕𝑦
+ 𝜇 ∇2𝑢 + 𝜌𝑔𝑦 + (𝜎𝐵2 sin2 𝛽)𝑢                                                                   (13) 
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ρ 
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
 = −

𝜕𝑝

𝜕𝑧
+ 𝜇 ∇2𝑢 + 𝜌𝑔𝑧 + (𝜎𝐵2 sin2 𝛽)𝑢                                                                 (14) 

Non-Dimensionalizing the above governing equations using 

𝑢 = 𝑈𝑢′, 𝑣 = 𝑈𝑣 ′, 𝑤 = 𝑈𝑤 ′ , 𝑥 = 𝐷𝑥′ , 𝑦 = 𝐷𝑦 ′, 𝑧 = 𝐷𝑧′, 𝑡 =
𝐷

𝑈
𝑡 ′, 𝑝 = 𝜌𝑈2𝑝′, 𝑅𝑒 =

𝑈𝐷

𝜈
 

Where D is the characteristic distance. We get 

𝑈

𝐷
 
𝜕𝑢′

𝜕𝑥′
+
𝜕𝑣 ′

𝜕𝑦 ′
+
𝜕𝑤 ′

𝜕𝑧′
 = 0                                                                                                                                                 (15) 

𝑈2

𝐷
 
𝜕𝑢′

𝜕𝑡 ′
+ 𝑢′

𝜕𝑢′

𝜕𝑥′
+ 𝑣′

𝜕𝑢′

𝜕𝑦 ′
+ 𝑤′

𝜕𝑤′

𝜕𝑧′
 =

𝑈2

𝐷
 −

𝜕𝑝′

𝜕𝑥′
+

𝜈

𝐷𝑈
 ∇2𝑢′ +

(𝜎𝐷𝐵2 sin2 𝛽)𝑢′

𝑈𝜌
 + 𝑔𝑥                           (16) 

𝑈2

𝐷
 
𝜕𝑣′

𝜕𝑡 ′
+ 𝑢′

𝜕𝑣′

𝜕𝑥′
+ 𝑣′

𝜕𝑣′

𝜕𝑦 ′
+ 𝑤′

𝜕𝑤′

𝜕𝑧′
 =

𝑈2

𝐷
 −

𝜕𝑝′

𝜕𝑦 ′
+

𝜈

𝐷𝑈
 ∇2𝑣′ +

(𝜎𝐷𝐵2 sin2 𝛽)𝑣′

𝑈𝜌
 + 𝑔𝑦                          (17) 

𝑈2

𝐷
 
𝜕𝑤′

𝜕𝑡 ′
+ 𝑢′

𝜕𝑤′

𝜕𝑥′
+ 𝑣′

𝜕𝑤′

𝜕𝑦 ′
+ 𝑤′

𝜕𝑤′

𝜕𝑧′
 =

𝑈2

𝐷
 −

𝜕𝑝′

𝜕𝑧′
+

𝜈

𝐷𝑈
 ∇2𝑤′ +

(𝜎𝐷𝐵2 sin2 𝛽)𝑤′

𝑈𝜌
 + 𝑔𝑧                      (18) 

Removing the dashes from equations (15), (16), (17) and (18),  

Again the fluid flow is two dimensional 𝜕𝑤 𝜕𝑧 = 0 

The fluid flow is steady 
𝜕

𝜕𝑡
= 0 

The fluid flow is in y-direction meaning 𝑢 = 𝑤 = 0 

For the fluid flows which have the vertical slope, the gravity is considered to be 

𝛼ℎ = 𝑔 sin𝛽 , 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 − 𝛼𝑑ℎ = 𝑔 sin𝛽 𝑑𝑦 

Reynolds number Re=
𝑈𝐷

𝜈
 

Putting the above conditions in equations (15), (16), (17) and (18), we obtain 

𝜕𝑢

𝜕𝑦
= 0                                                                                                                                                                                  (19) 

0 = −
𝑑𝑝

𝑑𝑥
                                                                                                                                                                                 (20) 

0 = −
𝑑𝑝

𝑑𝑦
− 𝛼

𝑑ℎ

𝑑𝑦
+

1

𝑅𝑒

𝑑2𝑢

𝑑𝑥2
+

(𝜎𝐷𝐵2 sin2 𝛽)𝑢

𝑈𝜌
                                                                                                             (21) 

Equation (20) shows that the pressure is independent on x meaning that the pressure depends only on y. 

Equation (21) can be re-written as 
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𝑑 𝑝 + 𝛼ℎ 

𝑑𝑦
=

1

𝑅𝑒

𝑑2𝑢

𝑑𝑥2
+

(𝜎𝐷𝐵2 sin2 𝛽)𝑢

𝑈𝜌
                                                                                                                        (22) 

Differentiating equation (22) with respect to y, we get 

𝑑2 𝑝 + 𝛼ℎ 

𝑑𝑦2
= 0𝑟

𝑑

𝑑𝑦
 
𝑑 𝑝 + 𝛼ℎ 

𝑑𝑦
  = 0                                                                                                                        (23)   

Integrating (23), we obtain 

𝑑 𝑝 + 𝛼ℎ 

𝑑𝑦
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑄  𝑠𝑎𝑦                                                                                                                               (24) 

Substituting (24) into (22) we get 

𝑑2𝑢

𝑑𝑥2
+

(𝜎𝐷2𝐵2 sin2𝛽)𝑢

𝜇
= 𝑄𝑅𝑒                                                                                                                                       (25) 

But Hartmann number M= 𝐷𝐵 
𝜎

𝜇
 

Substituting Hartman number in (25) we obtain 

𝑑2𝑢

𝑑𝑥2
+ (𝑀2 sin2 𝛽)𝑢 = 𝑄𝑅𝑒                                                                                                                                          (26) 

Equation (26) is non-homogeneous second ordinary differential equation. To solve equation (26) we first solve 

for homogeneous part of it and we solve also for the particular integral and we combine two solution.    

3.1. Solution for Homogeneous part 𝒖𝒄 

𝐷2 + 𝑀2 sin2 𝛽 = 0 , 𝐷 = ±𝑀 sin𝛽𝑖 

𝑢𝑐 = 𝐴cos(𝑀 sin𝛽)𝑥 + 𝐵 sin(𝑀 sin𝐵)𝑥                                                                                                                       (27) 

3.2. Solution for Particular Integral 

𝑢𝑝 =
𝑄𝑅𝑒

(𝐷2 + 𝑀2 sin2 𝛽)
(cos𝑎𝑥 + 𝑠𝑖𝑛𝑎𝑥) =

𝑄𝑅𝑒

𝑀2 sin2 𝛽
𝑏𝑢𝑡 𝑎 = 0                                                                    (28) 

Combining (27) and (28) we get the general solution for velocity distribution which is expressed in terms of 

Hartmann number, Reynolds number and Pressure and Gravitational forces 

𝒖 = 𝑨𝐜𝐨𝐬(𝑴𝐬𝐢𝐧𝜷)𝒙 + 𝑩𝐬𝐢𝐧(𝑴𝐬𝐢𝐧𝜷)𝒙 +
𝑸𝑹𝒆

𝑴𝟐 𝐬𝐢𝐧𝟐𝜷
                                                                                           (𝟐𝟗) 

Where A and B are constants to be determined using the boundary conditions. 

𝑢 = 0 𝑤ℎ𝑒𝑛 𝑥 = −1 𝑎𝑛𝑑 𝑢 = 1 𝑤ℎ𝑒𝑛 𝑥 = 1                                                                                                             (30)   
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Using the boundary condition (30), (29) becomes 

0 = 𝐴 cos(𝑀 sin𝛽) − 𝐵 sin(𝑀 sin𝛽) +
𝑄𝑅𝑒

𝑀2 sin2 𝛽
                                                                                                       31  

1 = 𝐴 cos(𝑀 sin𝐵) + 𝐵 sin(𝑀 sin𝛽) +
𝑄𝑅𝑒

𝑀2 sin2 𝛽
                                                                                                      (32) 

Adding (31) and (32) we get 

𝐴 =
𝑀2 sin2 𝛽 − 2𝑄𝑅𝑒

2𝑀2 sin2 𝛽 cos(𝑀 sin𝛽)
                                                                                                                                            (33) 

Subtracting (32) from (31) we obtain 

𝐵 =
1

2 sin(𝑀 sin𝛽)
                                                                                                                                                               (34) 

Using (33) and (34) equation (29) reduces to 

𝑢 =
𝑀2 sin2 𝛽 − 2𝑄𝑅𝑒

2𝑀2 sin2 𝛽 cos(𝑀 sin𝛽)
cos(𝑀 sin𝛽)𝑥 +

1

2 sin(𝑀 sin𝛽)
sin(𝑀 sin𝛽)𝑥 +

𝑄𝑅𝑒

𝑀2 sin2 𝛽
                             (35) 

OR 

 𝑢 =
sin 𝑀 sin 𝛽𝑥+sin 𝛽 

sin ( 2𝑀 sin 𝛽)
−

𝑄𝑅𝑒

𝑀2 sin 2 𝛽
 

cos (𝑀 sin 𝛽)𝑥

cos (𝑀 sin 𝛽)
− 1                                                                                                       (36) 

 

IV. RESULTS 
The Navier-Stokes equations have been solved analytically in order to evaluate the fluid flow and the results 

were plotted using MATLAB. The analysis of the results were based on the different parameters used in this 

work that is the Hartmann number, the angle of inclination, the pressure gradient and gravitational force and the 

Reynolds number . The graphs resulted from analyzing each parameter and keeping the others fixed. The 

upstream velocity is considered to be U =1. 
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Fig 4. 1 

 

Fig 4. 2 
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Fig 4. 3 

  

 

Fig 4. 4 
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Fig 4.1 shows that decreasing the negative values of Hartmann number leads to an increase of the velocity 

profile while increasing positive value of the Hartmann number decreases the velocity of the fluid flow. The 

Hartmann number is the ratio of magnetic force to viscosity and we have varied the values of Hartmann number 

while the other parameters are fixed Q= -1, 𝛽 = 450 , 𝑅𝑒 = 0.2. 

Fig 4.2 shows that when the angle of inclination is increased then the velocity profile is increased and when the 

angle of inclination is decreased leads to a decrease of velocity. When the angle is at 90 the magnetic field is 

normal. We have varied the angles of inclination while the other parameters are fixed M=1,Q= -1, 𝑅𝑒 = 0.2. 

Fig 4.3 shows the effect of Q and it is observed from the figure, decreasing the negative values of pressure 

gradient and gravitational force leads to an increase of velocity profile while increasing the positive values of Q 

leads to a decrease of velocity profile. We have varied the values of Q while the other parameters are fixed 

M=1, 𝛽 = 450 , 𝑅𝑒 = 0.2. 

Fig 4.4 shows that increasing the Reynolds number leads to increase of the velocity profile while decreasing the 

values of Reynolds number leads to a decrease of the velocity profile because the Reynolds number is the ratio 

of inertia force to viscous force. We have varied the values of Reynolds number while the other parameters are 

fixed M=1, Q= -1, 𝛽 = 450. 

V. CONCLUSION 
The investigation on the steady incompressible viscous fluid flow through vertical plates under the presence of 

inclined magnetic field has been done. The fluid flow is initially at rest and one plate is stationary and the other 

one is moving.  From the graphs we have observed that decreasing the negative values of Hartmann leads to 

increasing of velocity of the fluid flow while increasing the values of Hartmann number decreases the velocity 

distribution. The results also show that increasing the angle of inclination leads to an increase of velocity 

distribution.  The effect of Q (pressure gradient and gravitational force) is observed in the way that when the 

negative values of these forces are decreased then the velocity profile will increase while increasing the positive 

values of pressure gradient and gravitational force leads to decrease of velocity profile. The Reynolds number is 

the ratio of inertia force to viscous force, the results shows that increasing Reynolds number leads to an increase 

of velocity distribution while decreasing Reynolds number leads to a decrease of velocity distribution. These 

results are of the great importance in solving space vehicle propulsion. Power convention: the extraction of 

electrical energy from MHD is very interesting problem. It is so-called magneto hydrodynamic. 

  Investigation on the unsteady MHD flow case can be carried out; the investigation can  be done on the fluid 

flow with heat and mass transfer. We recommend that further research can be done for the same problem 

including the chemical reaction with radiation. 
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