Module approximate amenability of $l^1(S)$ and 2-weak module amenability of Beurling semigroup algebras

Gholamreza Asgari and Davood Ebrahimi Bagha*

ABSTRACT. In this paper, we study the module approximate amenability of semigroup algebra $l^1(S)$ as $l^1(E)$ -module, where S is an inverse semigroup and E is the set of idempotents of S. Also, we show that the weighted algebra $l^1(S,\omega)$ as $l^1(E,\omega)$ -module is 2-weakly module amenable.

1. Introduction

The concept of amenability of Banach algebras was first introduced by B. E. Johnson in [4]. M. Amini in [1] introduced the notion of module amenability for a class of Banach algebras which could be considered as a generalization of the Johnson's amenability. He showed that for an inverse semigroup S with the set of idempotents E, the semigroup algebra $l^1(S)$ on $l^1(E)$ is module amenable if and only if S is amenable.

The concept of approximately amenable Banach algebras was intiated by Ghahramani and Loy in [18]. They showed that the group algebra $L^1(G)$ is approximately amenable if and only if G is amenable where G is locally compact. This is fails to be true for discrete semi-group. If S is discrete semi-group, then approximate amenability of $l^1(S)$ implies amenability of S.

Recently Bami and Samea have shown the above result for the case that S is cancellative semigroup. Aghababa and Bodaghi in [19] defines the notions of module approximate amenability and module approximate contractibility for a Banach algebra \mathcal{A} which is also a Banach \mathfrak{A} -module with compatible actions that introduced in [1]. They showed if S is an inverse semigroup with the set of idempotents E, then the semigroup algebra $l^1(S)$ is $l^1(E)$ -

 $^{^{0*}\}mathrm{Corresponding}$ author

²⁰¹⁰ Mathematics Subject Classification. Primary 46H25; Secondary 43A07.

Key words and phrases. Banach modules; Module approximate amenability; Weakly module amenability.

module approximately amenable if and only if S is amenable, where $l^1(E)$ acts on $l^1(S)$ with trivial left action.

The concept of weak amenability was first introduced by Bade, Curtis and Dales in [2] for commutative Banach algebras. B. E. Johnson in [7] extended to the non-commutative case.

Let \mathcal{A} be a Banach algebra and $n \geq 0$ be an integer. A Banach algebra $\mathcal{A}^{(n)}$ be the n-th dual module of \mathcal{A} when n > 0 and be \mathcal{A} itself when n = 0. A Banach algebra \mathcal{A} is called weakly amenable [2] if every bounded derivation $D: \mathcal{A} \longrightarrow \mathcal{A}^*$ is inner. Also a Banach algebra \mathcal{A} is called n-weakly amenable [?] if every bounded derivation $D: \mathcal{A} \longrightarrow \mathcal{A}^{(n)}$ are inner. The Banach algebra \mathcal{A} is permanently weakly amenable [?] if it is n-weakly amenable for all $n \geq 1$.

Let $L^1(G,\omega)$ be a Beurling algebra on a locally compact abelian group G. The case of weak amenability has been studied in [2] and [5]. One major result states that $L^1(Z,\omega)$ is weakly amenable if and only if $\inf_n \frac{\omega(n)\omega(-n)}{n} = 0$. Therefore $l^1(G,\omega)$ is weakly amenable if $\inf_n \frac{\omega(nt)\omega(-nt)}{n} = 0$ for all $t \in G$.

Dales and Lau in [16] showed that if $\omega \geq 1$ and $\inf_n \frac{\omega(nt)}{n} = 0$ for all $t \in G$, then $L^1(G, \omega)$ is 2-weakly amenable.

In this paper, we consider the canonical actions of $l^1(E)$ on $l^1(S)$ and discuss the module approximate amenability of $l^1(S)$. we investigate the 2-weak module amenability for $l^1(S,\omega)$ where S is an inverse semigroup and ω be a weight on S.

2. Module approximate amenability of semigroup algebras with new actions

Let \mathcal{A} and \mathfrak{A} be Banach algebras and let \mathcal{A} be a Banach \mathfrak{A} -module such that

$$\alpha.(ab) = (\alpha.a).b$$
 $(ab).\alpha = a(b.\alpha)$ $(a, b \in \mathcal{A}, \alpha \in \mathfrak{A}).$

If X is both a Banach \mathcal{A} -module and a Banach \mathfrak{A} -module such that for all $a \in \mathcal{A}, x \in X, \alpha \in \mathfrak{A}$

$$\alpha.(a.x) = (\alpha.a).x \quad (a.x).\alpha = a.(x.\alpha) \quad x.(a.\alpha) = (x.a).\alpha \quad x.(\alpha.a) = (x.\alpha).a,$$

then X is called an $A-\mathfrak{A}$ -module. If moreover,

$$\alpha.x = x.\alpha$$
 $(\alpha \in \mathfrak{A}, x \in X),$

then X is called a *commutative* A- \mathfrak{A} -module.

Let X and Y be A- \mathfrak{A} -modules and let $\phi: X \to Y$ be a linear map which satisfies the following conditions:

$$\begin{split} \phi(\alpha.x) &= \alpha.\phi(x) \qquad \phi(x.\alpha) = \phi(x).\alpha \\ \phi(a.x) &= a.\phi(x) \qquad \phi(x.a) = \phi(x).a \qquad (a \in \mathcal{A}, x \in X, \alpha \in \mathfrak{A}). \end{split}$$

MODULE APPROXIMATE AMENABILITY OF $l^1(S)$ AND 2-WEAK MODULE AMENABILITY OF BEURLING SEMIGROUP ALGEBRAS

Then ϕ is called an \mathcal{A} - \mathfrak{A} -module bi homomorphism. Let X be a commutative Banach \mathcal{A} - \mathfrak{A} -module, then the projective tensor product $\mathcal{A} \hat{\otimes} X$ is also an \mathcal{A} - \mathfrak{A} -module with the following actions:

$$a.(b \otimes x) = (ab) \otimes x$$
 $(b \otimes x).a = b \otimes (x.a)$
 $\alpha.(b \otimes x) = (\alpha.b) \otimes x$ $(b \otimes x).\alpha = b \otimes (x.\alpha)$ $(a, b \in \mathcal{A}, x \in X, \alpha \in \mathfrak{A}).$

Now, let $\pi: \mathcal{A} \hat{\otimes} X \to X$ be defined by

$$\pi(a \otimes x) = a.x$$
 $(a \in \mathcal{A}, x \in X).$

It follows from the definition that π is an A- \mathfrak{A} -module bi homomorphism.

Let I_X be the closed A- \mathfrak{A} -submodule of the projective tensor product $A \hat{\otimes} X$ generated by

$$\{(a.\alpha) \otimes x - a \otimes (\alpha.x) : a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X\}.$$

Let J_X be the closed submodule of X generated by $\pi(I_X)$. That is

$$J_X = \overline{\langle \pi(I_X) \rangle}.$$

In special case, when $X=\mathcal{A},\,J_{\mathcal{A}}$ is the closed ideal generated by $\{(a.\alpha)b-a(\alpha.b):a,b\in\mathcal{A},\alpha\in\mathfrak{A}\}$ and the quotient Banach algebra $\frac{\mathcal{A}}{J_{\mathcal{A}}}$ is also an \mathcal{A} - \mathfrak{A} -module.

LEMMA 2.1. Let X^* be a commutative Banach A- \mathfrak{A} -module and let $D: A \to X^*$ be a module derivation. Then $D(A) \subseteq J_X^{\perp}$.

PROOF. Let
$$a, b \in \mathcal{A}, \alpha \in \mathfrak{A}$$
 and $x \in X$, then $(a.\alpha)x - a(\alpha.x) \in J_X$. Then

$$\langle D(b), (a.\alpha)x - a(\alpha.x) \rangle = \langle D(b)(a.\alpha) - (D(b)a).\alpha, x \rangle = 0.$$

For Banach algebras A, $\mathfrak A$ and a Banach A- $\mathfrak A$ -module X with compatible actions, a bounded map $D:A\to X$ is called a *module derivation* [1] if D satisfies the following:

$$D(ab) = D(a).b + a.D(b)$$

$$D(\alpha.a) = \alpha.D(a), \qquad D(a.\alpha) = D(a).\alpha \qquad (a, b \in \mathcal{A}, \alpha \in \mathfrak{A}).$$

Note that $D: \mathcal{A} \to X$ is bounded if there exists M > 0 such that for every $a \in \mathcal{A}$, $||D(a)|| \leq M||a||$. If X is a commutative \mathcal{A} - \mathfrak{A} -module, then for each $x \in X$ defines an module derivation as $D_x(a) = a.x - x.a$, $(a \in \mathcal{A})$. These are called inner module drivation.

DEFINITION 2.2. A Banach algebra \mathcal{A} is called *module amenable* (as an \mathfrak{A} - module) if for every Banach \mathcal{A} - \mathfrak{A} -module X^* with commutative J_X^{\perp} (as an \mathfrak{A} - module) and $a.(\alpha.y) = (a.\alpha).y \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}, y \in J_X^{\perp})$, each module derivation $D: \mathcal{A} \to J_X^{\perp}$ is inner.

Note that if $\mathfrak{A} = \mathbb{C}$, then the module amenability will absolutely overlap with Johnson's amenability [4] for a Banach algebra.

Let X is a commutative A- \mathfrak{A} -module. For each net $x_{\alpha} \in X$ defines an approximate inner module derivation as

$$D_{x_{\alpha}}(a) = \lim_{\alpha} (a \cdot x_{\alpha} - x_{\alpha} \cdot a) \quad (a \in \mathcal{A}).$$

DEFINITION 2.3. The Banach algebra \mathcal{A} is called module approximate amenable (as an \mathfrak{A} -module) if for every Banach \mathcal{A} - \mathfrak{A} -module X^* with commutative J_X^{\perp} (as an \mathfrak{A} -module) and $a.(\alpha.y)=(a.\alpha).y \quad (a\in\mathcal{A},\alpha\in\mathfrak{A},y\in J_X^{\perp})$, each \mathfrak{A} -module derivation $D:\mathcal{A}\longrightarrow J_X^{\perp}$ is approximate inner.

THEOREM 2.4. Let A be a Banach \mathfrak{A} -module with commutative canonical actions. If J_0 be a closed ideal of A such that $J_A \subseteq J_0$, then $\frac{A}{J_0}$ is commutative Banach \mathfrak{A} -module.

PROOF. If canonical actions are commutative, then $J_{\mathcal{A}} = \{0\}$. Therefore $0 = a.\alpha - \alpha.a \in J_0$. By [17, Theorem-], $\frac{\mathcal{A}}{J_0}$ is commutative banach \mathfrak{A} -module.

THEOREM 2.5. Let \mathcal{A} be a Banach \mathfrak{A} -module with caconical actions and J_0 be a closed ideal of \mathcal{A} such that $J_{\mathcal{A}} \subseteq J_0$, then for any commutative Banach \mathfrak{A} -module J_X^{\perp} with canonical actions every module derivation $D: \frac{\mathcal{A}}{J_0} \longrightarrow J_X^{\perp}$ is approximate inner. So $\frac{\mathcal{A}}{J_0}$ is module approximate amenable

PROOF. Suppose X be a unital commutative $\frac{A}{J_0}$ - \mathfrak{A} - bimodule and $D: \frac{A}{J_0} \longrightarrow J_X^{\perp}$ be a bounded module derivation. Let $a.x = (a+J_0).x$ and $x.a = x.(a+J_0)$ $(a \in \mathcal{A}, x \in X)$. In this case \mathcal{A} becomes to commutative Banach \mathcal{A} -bimodule. In the other hand we define

$$\alpha.x = \alpha * x, \quad x.\alpha = x * \alpha \quad (x \in X, \alpha \in \mathfrak{A}).$$

Thus X is a Banach \mathfrak{A} -module. If we suppose $x.\alpha = \alpha.x$ then X is commutative Banach $\mathcal{A} - \mathfrak{A}$ - module. Conside $r \overline{D} : \mathcal{A} \longrightarrow X^*$ with $\overline{D}(a) = D(a + J_0)$ and show that \overline{D} is a module derivation. Let $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$ we have

$$\overline{D}(a \pm b) = D(a \pm b + J_0) = D((a + J_0) \pm (b + J_0)) = D(a + J_0) \pm D(b + J_0) = \overline{D}(a) \pm \overline{D}(b)$$
and

$$\overline{D}(ab) = D(ab + J_0)(b + J_0)
= (D(a + J_0))(b + J_0) + (a + J_0)(D(b + J_0))
= \overline{D}(a)(b + J_0) + (a + J_0)\overline{D}(b)
= \overline{D}(a)b + a\overline{D}(b)$$

This is obvious that \mathcal{A} is an \mathfrak{A} -module and the same as for $\frac{\mathcal{A}}{J_0}$. let X as a $\frac{\mathcal{A}}{J_0} - \mathfrak{A}$ -module with compatible actions in [1]. Hence

MODULE APPROXIMATE AMENABILITY OF $l^1(S)$ and 2-weak module amenability of Beurling semigroup algebras 5

$$\overline{D}(\alpha.a) = D(\alpha.a + J_0) = D(\alpha.(a + J_0)) = \alpha * D(a + J_0) = \alpha * \overline{D}(a) = \alpha.\overline{D}(a)$$

and similarly $\overline{D}(a.\alpha) = \overline{D}(a).\alpha$.

In this case \overline{D} is a module derivation and since \mathcal{A} is module approximate amenable then there is $(x_{\alpha}) \in X^*$ such that

$$D(a + J_0) = \overline{D}(a) = \lim_{\alpha} [a.(x_{\alpha}) - (x_{\alpha}).a] = \lim_{\alpha} [(a + J_0).(x_{\alpha}) - (x_{\alpha}).(a + J_0)]$$

and hence D is inner $\hfill\Box$

THEOREM 2.6. Let \mathcal{A} and \mathcal{B} are Banach algebras and Banach \mathfrak{A} -modules. If \mathcal{A} be a module approximate amenable and $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a continuouse epimorphism such that $\overline{\varphi(\mathcal{A})} = \mathcal{B}$, then \mathcal{B} is module approximate amenable.

PROOF. Let J_X be an \mathcal{B} -A-module. Since φ is epimorphism, then J_X is an \mathcal{A} -A-module. If $D: \mathcal{B} \longrightarrow J_X^{\perp}$ be a module derivation, then $Do\varphi: \mathcal{A} \longrightarrow J_X^{\perp}$ is module derivation. But \mathcal{A} is module approximate amenable, then there exist net $\{x_{\alpha}\} \subseteq J_X^{\perp}$ such that for each $a \in \mathcal{A}$,

$$Do\varphi(a) = D(\varphi(a)) = \lim_{\alpha} (\varphi(a).x_{\alpha} - x_{\alpha}.\varphi(a)).$$

Then $Do\varphi$ is inner. But $\overline{\varphi(A)} = \mathcal{B}$ and D is continuouse, therefore D is inner.

LEMMA 2.7. Let \mathcal{A} be a Banach \mathfrak{A} -module and $J_{\mathfrak{A}}$ is an closed ideal of \mathcal{A} . Module approximate amenability of \mathcal{A} implies that of $\frac{\mathcal{A}}{J_{\mathfrak{A}}}$.

PROOF. If $\pi: \mathcal{A} \longrightarrow \frac{\mathcal{A}}{J_{\mathfrak{A}}}$ defined by $\pi(a) = a + J_{\mathfrak{A}}$ for each $a \in \mathcal{A}$, then π is continuouse epimorphism and $\overline{\varphi(\mathcal{A})} = \mathcal{B}$. The result hold by Theorem 2.6.

3. Semigroup Algebra

Recall that a discrete semigroup S is called an inverse semigroup if for each $s \in S$ there is a unique element $s^* \in S$ such that $s^*ss^* = s$ and $ss^*s = s^*$. An element $e \in S$ is called idempotent if $e = e^* = e^2$. The set of all idempotents of S is denote by E. E is a commutative sub-semigroup of S with the natural order on E, defined by

$$e \le d \iff ed = e \quad (e, d \in E).$$

 $l^1(S)$ as a Banach algebra is a Banach $l^1(E)$ -module with compatible actions in [1]. The authors in [17] discuss approximate amenability of $l^1(S)$ with following actions

$$\delta_e.\delta_s = \delta_s \quad and \quad \delta_s.\delta_e = \delta_{se} = \delta_s * \delta_e \quad (s \in S, e \in E).$$

We consider right and left actions of $\ell^1(E)$ on $\ell^1(S)$ by

$$\delta_e.\delta_s = \delta_{es} = \delta_e * \delta_s$$
 and $\delta_s.\delta_e = \delta_{se} = \delta_s * \delta_e$ $(s \in S, e \in E)$.

These actions make $\ell^1(S)$ a Banach $\ell^1(E_S)$ -module.

Let $J_{\ell^1(S)}$ be the closed submodule of $\ell^1(S)$ generated by

$$\{\delta_{set} - \delta_s : s, t \in S, e \in E_S\}.$$

We define an equivalence relation on S as follows

$$s \approx t \qquad \Longleftrightarrow \qquad \delta_s - \delta_t \in J_{\ell^1(S)} \qquad (s, t \in S).$$

In [1], it is shown that S is amenable if and only if $\frac{S}{\approx}$ is amenable. The authors in [6], prove that for an inverse semigroup S the quotient semigroup $\frac{S}{\approx}$ is a discrete group. Also $\frac{l^1(S)}{J_{\ell^1(S)}} \cong l^1(\frac{S}{\approx})$.

Since $l^1(S)$ is a $l^1(E)$ -module, then $\frac{l^1(S)}{J_{\ell^1(S)}} (\cong l^1(\frac{S}{\approx}))$ is a Banach $l^1(E)$ -module by

$$\delta_e.(\delta_s + J_{\ell^1(S)}) = \delta_{es} + J_{\ell^1(S)}$$
, $(\delta_s + J_{\ell^1(S)}).\delta_e = \delta_{se} + J_{\ell^1(S)}$.

Let $s \in S$ and $e = s^*s \in E$, then $s = ss^*s = es$. Therefore

$$\delta_{se} - \delta_s = \delta_{se} - \delta_{es} \in J_{\ell^1(S)}.$$

So $se \approx s$ and this means that $\delta_e.\delta_{[s]} = \delta_{[se]} = \delta_{[s]}$. Similarly $\delta_{[s]}.\delta_e = \delta_{[es]} = \delta_{[s]}$. In this case we conclude $l^1(\frac{S}{\approx})$ is a commutative Banach $l^1(\frac{S}{\approx})-l^1(E)$ -module.

Theorem 3.1. Let S be an inverse semigroup. $l^1(\frac{S}{\approx})$ is module approximate amenable with canonical actions if and only if $l^1(\frac{S}{\approx})$ be an approximate amenable.

PROOF. We consider left and right actions of $l^1(E)$ on $l^1(\frac{S}{\approx})$ by $\delta_{[s]} * \delta_e = \delta_{[se]} = \delta_{[s]}$, $\delta_e * \delta_{[s]} = \delta_{[es]} = \delta_{[s]}$ $(e \in E, s \in S)$.

Hence $l^1(\frac{S}{\approx})$ is commutative Banach $l^1(E)$ -module. In the other word, we can say the left and right actions of $l^1(E)$ on $l^1(\frac{S}{\approx})$ is trivial. Thus

$$l^1(\frac{S}{\approx}) \widehat{\otimes}_{l^1(E)}{}^1(\frac{S}{\approx}) \cong l^1(\frac{S}{\approx}) \bigotimes l^1(\frac{S}{\approx}).$$

Therefore $l^1(\frac{S}{\approx})$ is module approximate amenable if and only if $l^1(\frac{S}{\approx})$ is approximate amenable.

Theorem 3.2. Let S be an inverse semigroup, then $l^1(S)$ is module approximate amenable with canonical actions if and only if $l^1(\frac{S}{\approx})$ be a module approximate amenable

PROOF. We know that $\frac{l^1(S)}{J_{\ell^1(S)}} \cong l^1(\frac{S}{\approx})$. We proof that $l^1(S)$ is module approximate amenable if and only if $\frac{l^1(S)}{J_{\ell^1(S)}}$ is module approximate amenable.

Let left and right actions of $l^1(E)$ on X with * (as an \mathfrak{A} -module).

Suppose that $\frac{l^1(S)}{J_{\ell^1(S)}}$ be a module approximate amenable and J_X^{\perp} be a commutative $l^1(E)$ - $l^1(S)$ -module. Let $D: l^1(S) \longrightarrow J_X^{\perp}$ be a module derivation, then

$$\delta_{se}.x = \delta_s * (\delta_e.x) = \delta_s * (x.\delta_e) = (\delta_s * x).\delta_e = \delta_e.(\delta_s * x) = \delta_{es}.x \quad (e \in E, s \in S, x \in X).$$

 $\hbox{\tt MODULE APPROXIMATE AMENABILITY OF $l^1(S)$ AND 2-WEAK MODULE AMENABILITY OF BEURLING SEMIGROUP ALGEBRA \textbf{S} and \textbf{S} and \textbf{S} are already as the same of th$

Therefore $J_{\ell^1(S)}.X=0$ and similarly $X.J_{\ell^1(S)}=0$. Then X is commotative $\frac{l^1(S)}{J_{\ell^1(S)}}-l^1(E)$ -module with the following module actions

$$(\delta_s + J_{\ell^1(S)}).x = \delta_s.x$$
 $x.(\delta_s + J_{\ell^1(S)}) = x.\delta_s,$

for each $s \in S$ and $x \in X$. Since D is a module derivation, then

$$D(\delta_{es}) = \delta_e * D(\delta_s)$$
 $D(\delta_{se}) = D(\delta_s) * \delta_e$ $(e \in E, s \in S).$

But X is commutative $l^1(E)$ - $l^1(S)$ -module. Hence $D(\delta_{es}) - D(\delta_{se}) = 0$. On the other hand

$$D(\delta_t).(\delta_{es} - \delta_{se}) = 0 = (\delta_{es} - \delta_{se}).D(\delta_h) \quad (t, h, s \in S, e \in E).$$

So

$$D(\delta_t(\delta_{es} - \delta_{se})\delta_h) = D(\delta_t).(\delta_{es} - \delta_{se})\delta_h + \delta_t(\delta_{es} - \delta_{se}).D(\delta_h) = 0,$$

therefore $D|_{J_{\ell^1(S)}} = 0$. Thus D induces a module derivation $\overline{D}: \frac{l^1(S)}{J_{\ell^1(S)}} \longrightarrow J_X^{\perp}$ that is defined by $\overline{D}(\delta_s + J_{\ell^1(S)}) = D(\delta_s)$.

If $\frac{l^1(S)}{J_{\ell^1(S)}}$ (as $l^1(E)$ -module) be a module approximate amenable with canonical actions, then there exist net $(x_{\alpha}) \subseteq J_X^{\perp}$ such that

$$D(\delta_s) = \overline{D}(\delta_s + J_{\ell^1(S)}) = \lim_{\alpha} [(\delta_s + J_{\ell^1(S)}).x_{\alpha} - x_{\alpha}(\delta_s + J_{\ell^1(S)})] = \lim_{\alpha} (\delta_s.x_{\alpha} - x_{\alpha}.\delta_s).$$

Thus D is approximate inner and so $l^1(S)$ is module approximate amenable. Conversely, let X be a commutative $\frac{l^1(S)}{J_{\ell^1(S)}}$ - $l^1(E)$ -module and $D:\frac{l^1(S)}{J_{\ell^1(S)}}\longrightarrow J_X^\perp$ be a module derivation, then X is a $l^1(S)$ - $l^1(E)$ -module with following module actions

$$\delta_s.x = (\delta_s + J_{\ell^1(S)}).x, \quad x.\delta_s = x.(\delta_s + J_{\ell^1(S)}) \quad (x \in X, s \in S).$$

Let $\overline{D}: l^1(S) \longrightarrow J_X^{\perp}$ be defined by $\overline{D}(\delta_s) = D(\delta_s + J_{\ell^1(S)})$ foe each $s \in S$, then \overline{D} is module derivation. On the other hand $l^1(S)$ is module approximate amenable, then there exist a net $(x)_{\alpha} \subseteq J_X^{\perp}$ such that

$$\overline{D}(\delta_s) = \lim_{\alpha} x_{\alpha}.\delta_s - \delta_s.x_{\alpha} = \lim_{\alpha} (x_{\alpha}(\delta_s + J_{\ell^1(S)}) - (\delta_s + J_{\ell^1(S)}).x_{\alpha}) = D(\delta_s + J_{\ell^1(S)}). \quad (s \in S).$$

Therefore D is approximate inner and thus $\frac{l^1(S)}{J_{\ell^1(S)}}$ is module approximate amenable. \Box

Theorem 3.3. Let S be an inverse semigroup with the set of idempotents E. $l^1(S)$ is $l^1(E)$ -module approximate amenable with canonical actions if and only if S is amenable.

PROOF. By theorem 3.2, $l^1(S)$ is module approximate amenable (as a $l^1(E)$ -module) with canonical actions if and only if $l^1(\frac{S}{\approx})$ is module approximate amenable as a $l^1(E)$ -module. Therefore $l^1(\frac{S}{\approx})$ is approximate amenability by theorem 3.1. Since $\frac{S}{\approx}$ is discrete group, then by [18, theorem 3.2], $l^1(\frac{S}{\approx})$ is amenable and so S is amenable.

4. 2-weak module amenability of $l^1(S,\omega)$

DEFINITION 4.1. Let S be a invers semigroup and $\Omega_{l^1(S,\omega)}$ be all of character on $l^1(S,\omega)$ w, then $\Omega_{l^1(S,\omega)}$ is called θ -property

if
$$f = 0$$
 when $\varphi(f) = 0$, for each $\varphi \in \Omega_{l^1(S,\omega)}$ and $f \in l^1(S,\omega)$.

We know that a commutative Banach algebra is semisimple if and only if its Gelfand representation has trivial kernel. If $\Gamma: l^1(S, \omega) \longrightarrow C_0(\Omega_{l^1(S,\omega)})$ defined by $(f) = \widehat{f}$ be the Gelfand representation of $l^1(S,\omega)$, then

$$Ker\Gamma = \{ f \in l^1(S, \omega) : \widehat{f}(\varphi) = \varphi(f) = 0 \text{ for each } \varphi \in \Omega_{l^1(S, \omega)} \}.$$

If $\Omega_{l^1(S,\omega)}$ has 0-property then $ker\Gamma = 0$. In this case $l^1(S,\omega)$ is semisimple.

Theorem 4.2. (Singer-Wermer theorem) Let $\mathfrak A$ be a commutative Banach algebra and D be a bounded derivation. Then D maps $\mathfrak A$ in to it's radical. In particular if $\mathfrak A$ is semisimple then D=0.

PROOF.
$$[15, \text{ theorem } 2.7.20]$$

THEOREM 4.3. Let S be a commutative inverse semigroup and ω be a weight on S such that $\omega(s) = \omega(s^*)$ for each $s \in S$. If the following three conditions are met

- (i) For finite number $s \in S$ and $n \in N$, $\omega(s^* + (1-n)t) \geq 2\omega(s)$;
- (ii) $\Omega_{l^1(S,\omega)}$ has 0 property;
- (iii) $inf_{n\in\mathbb{N}}\frac{\omega(nt)}{n}=0,$

For $t \in S$, then $l^1(S, \omega)$ as $l^1(E, \omega)$ -module is 2-weak module amenable.

PROOF. First we know that $l^1(S,\omega)^*$ is $l^1(S,\omega) - l^1(E,\omega)$ module and the same as for $l^1(S,\omega)^{**}$. Let $D: l^1(S,\omega) \longrightarrow l^1(S,\omega)^{**} = l^\infty(S,\frac{1}{\omega})^*$ be a module derivation and $||D|| \le 1$.

If $\pi_{\omega}: l^1(S,\omega)^{**} \longrightarrow l^1(S,\omega)$ is a canonical projection then $\pi_{\omega}oD: l^1(S,\omega) \longrightarrow l^1(S,\omega)$ is a continuous derivation. Since $\Omega_{l^1(S,\omega)}$ has the 0-property then $l^1(S,\omega)$ is semisimple Banach algebra and by (4.2), $\pi_{\omega}oD=0$ then $D(l^1(S,\omega))\subseteq Ker\pi_{\omega}$. To prove D=0 it suffices to shows that for each $\lambda \in l^1(S,\omega)^*$ we have $\langle D(\delta_t), \lambda \rangle = 0$. We define $H_n=\{s \in S: \omega(s^*+(1-n)t) \geq 2\omega(s)\}$ and with (i), H_n is finite. Define

$$\theta_n(s) = \begin{cases} 0 & \text{if } s \in H_n \\ (\lambda \cdot \delta_{(1-n)t})(s) & \text{if } s \in S - H_n, \lambda \in l^1(E, \omega) \end{cases}$$

We have

$$sup_{s \in S} \tfrac{|\theta_n(s)|}{\omega(s)} = sup_{s \in S-H_n} \{ \tfrac{\lambda(s^* + (1-n)t)}{\omega(s^* + (1-n)t)}. \tfrac{\omega(s^* + (1-n)t)}{\omega(s)} \le 2 \parallel \lambda \parallel$$

In this case $\|\theta_n\| \le 2 \|\lambda\|$ and so $\theta_n \in l^{\infty}(S, \frac{1}{\omega})$. In the other way

MODULE APPROXIMATE AMENABILITY OF $l^1(S)$ AND 2-WEAK MODULE AMENABILITY OF BEURLING SEMIGROUP ALGEBRAS

$$\langle \delta_{(1-n)t}.D(\delta_{nt}), \lambda \rangle = \langle D(\delta_{nt}), \lambda.\delta_{(1-n)t} \rangle = \langle D(\delta_{nt}), \theta_n \rangle.$$

Since for each $n \in \mathbb{Z}$ we have $D(a) = \frac{1}{n}a^{1-n}D(a^n)$, therefore

$$\langle D(\delta_t), \lambda \rangle = \langle \frac{1}{n} \delta_{(1-n)t}. D(\delta_{nt}), \lambda \rangle$$

$$= \frac{1}{n} \langle \delta_{(1-n)t}. D(\delta_{nt}), \lambda \rangle$$

$$= \frac{1}{n} \langle D(\delta_{nt}), \lambda. \delta_{(1-n)t} \rangle$$

$$= \frac{1}{n} \langle D(\delta_{nt}), \theta_n \rangle.$$

In this case

$$|\langle D(\delta_t), \lambda \rangle| = \frac{1}{n} |\langle D(\delta_{nt}), \theta_n \rangle| = \frac{1}{n} ||D(\delta_{nt})|| ||\theta_n|| \leq \frac{1}{n} ||\delta_{nt}||_{\omega} ||\theta_n|| \leq 2\frac{\omega(nt)}{n} ||\lambda||.$$

But
$$\inf_{n \in \mathbb{N}} \frac{\omega(nt)}{n} = 0$$
, then $\langle D(\delta_t), \lambda \rangle = 0$.

References

- [1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum. 69 (2004), 243–254.
- [2] W. G. Bade, P. C. Curtis and H. G. Dales, Amenability for beurling and Lipschitz algebras, Proc. london Math. Soc. 55 (1987), 350–377.
- [3] N. Grønbæk, Amenability of weighted discrete convolution algebras on cancellative semigroups, proceeding of the royal society of Edinburgh, 110 (1998),351–360
- [4] B. E. Johnson, Cohomology in Banach Algebras, Memoirs Amer. Math. Soc. 127, Providence, 1972.
- [5] N. Gronbeak, A chracterization of weakly amenable Banach algebras, Sttudia Math, 94 (1989), 149–162.
- [6] R. Rezavand, M. Amini, M. H. Sattari, and D. Ebrahimi Bagha, Module Arens regularity for semigroup algebras, Semigroup Forum, 77 (2008), 300–305.
- [7] B. E. Johnson, Derivation from $L^1(G)$ into $L^1(G)$ and $L^{\infty}(G)$, in Harmonic Analysis, Luxembourg, (1994), 361–374.
- [8] J. M. Howei, Fundamental of semigroup theory, London Math. Society Monographs, Volume 12, Claren don Press. Oxford, (1995).
- [9] J. Duncan and I. Namioka, Amenability of inverese semigroups and their semigroup algebras, Proc. Roy. Soc. Edinburgh, 80A, (1988), 309–321.
- [10] W. D. Munn, A class of irreducible matrix representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc. 5, (1961), 41–48.
- [11] H. Pourmahmood-Aghababa, A note on two equivalence relations on inverese semigroups, Semigroup Froum. 84, (2012), 200–202.
- [12] H. Pourmahmood-Aghababa(Super) Module amenability, module topological center and semigroup algebras, Semigroup froum, 77, (2008), 300–305.
- [13] V. Runde, *Lectures on Amenability*, Lecture Notes in Mathematics, **1774**, Springer-Verlag, BerlinHeidelberg-New-Yourk, (2002).
- [14] A. Sahleh and S. Grailo Tanha, Module amenability of semigroup algebras under certain module actions, J. math. Ext. 8, No.2, (2014), 59–69.
- [15] H. G. Dales, *Banach algebras and automatic continuity*, London Mathematical Society Monographs 24, Clarendon Press, Oxford, (2000).
- [16] H. G. Dales and A. T. M. Lau, The second duals of Beurling Algebras, Mem. Amer. Math. Soc. 177,(2005).

- [17] M. Amini, A. Bodaghi and D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum. 80, (2010), 302–312.
- [18] F. Ghahramani and R. J. Loy, Generalized notions of amenability, J. Funct. Anal. 254, (2008), 1776–1810
- [19] H. p. Aghababa and A. Bodaghi, Module approximate amenability of Banach Algebras, Iranian.Math. Soc. 201, (2010), 1–21.

DEPARTMENT OF MATHEMATICS, CENTRAL TEHRAN BRANCH, ISLAMIC AZAD UNIVERSITY, TEHRAN, IRAN Email address: e_bagha@yahoo.com