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Abstract: Some breather wave solutions, which include breather solitary wave solutions, breather lump wave 

solutions, are obtained for the (3+1)-dimensional generalized shallow water equation through the Hirota bilinear 

method and test function method. Propagation behaviors of three breather waves are analyzed through figures. 

These results reveal more nonlinear phenomena for the (3+1)-dimensional generalized shallow water equation. 
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I．Introduction 

The (3+1)-dimensional generalized shallow water equation 

033  xzxtxxyxyxxxxy uuuuuuu ,                                  (1) 

where describes the propagation of long water waves in the ocean, estuaries and reservoirs, and has applications 

in weather simulations, tidal waves, river and irrigation flows, and tsunami prediction and so on[1,2]. Many 

researchers have studied this equation and obtained innovative results which include the structures and 

propagation behavior of the solutions [1-13], such as multiple-soliton solutions[1], the lump solutions[2] , 

traveling wave solutions and non-traveling wave solutions[3], rational solutions and lump 

solutions[4,5],periodic solitary wave solutions[6], Grammian and Pfaffian solutions[7]. Some researchers have 

also studied the variable-coefficient (3+1)-dimensional generalized shallow water wave equation and have 

obtained results similar to the previous ones[8,9]. In the previously obtained lump solutions, they are limited to 

the special situation for xz   or xy  . Among the results obtained, the Hirota bilinear method is the most 

applied method[1-4,7-9,11]. Although solutions of various structures have been obtained for the 

(3+1)-dimensional generalized shallow water equation, however, I don’t think the breather solutions are fully 

presented, such as breather solitary wave solutions, breather lump solutions, etc..  

In this paper，we continue to apply the Hirota bilinear method to construct breather-like solutions which 

include breather solitary wave solutions and breather lump solutions, and analyze the behavior of breather 

waves by using figures. 

Rest of the paper is organized as follows: In Sect.2, we will derive the bilinear forms of Eq.(1) and solve 

bilinear equation by the test functions. In Sect.3, analyzing the behaviors of breather waves by figures. Sect.4 

will be our conclusions. 

II．Breather solutions of Eq.(1) 

By the transformation 

                                                        
 Author email: chfuliu@163.com 

http://www.ijstre.com/


Breather solutions and propagation behaviors for the (3+1)-dimensional generalized shallow water. 

Manuscript id. 754235555               www.ijstre.com                          Page 26 

 xftzyxu )(ln2),,,(  ,                                          (2) 

Eq.(1) can be changed into the following bilinear equation 

033  zxxzxyxxxxxyyxxxxxxytyyt ffffffffffffffff ,            (3) 

2.1 Breather solitary waves 

First of all, we construct breather solitary wave solutions and assume that[14] 

)cos(),,,( )()( StRzQyPxCBeAeGtzyxf tNzMyLxKtNzMyLxK  
,  (4) 

where A, B, C, G, K, L, M, N, P, Q, R and S are real constants to be determined. We substitute Eq.(4) into 

Eq.(3), and collect the coefficients of 
)( tNzMyLxKie 
( i = 0,1,2), )cos( StRzQyPx   and 

)sin( StRzQyPx   to get the system of equations  about  A, B, C, G, K, L, M, N, P, Q, R and  

S (the tedious calculation process is omitted ). Solving these equations, we obtain the following results. 
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   (5) 

where C, G, L, P, Q and  R are arbitrary real constants.  

    Substituting Eq.(5) into Eq.(2), we can obtain solutions of Eq.(1) as follows 
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function of the triangular periodic function, the solitary wave can produce breathing effects in each direction of 

space, thus this solution is called a breather solitary wave solution. 

Case2: 

 )
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cos()cosh(2),,,(
2

2 t
L

MLPP
PxCMzLyAGtzyxf


 ,               (7) 

where A,C,G,L,M and P are arbitrary real constants. Substituting Eq.(7) into Eq.(2), another solution of Eq.(1) 

can be written as 
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Similarly, this solitary wave produces a breathing effect in the x-axis direction. 

Case3: 
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where A,C,G,K,N and Q are arbitrary real constants. Substituting Eq.(9) into Eq.(2), the third solution of Eq.(1) 

can be written as 
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2.2 Lump and breather lump waves 

Secondly, we consider the lump solutions and breather lump solutions. Test functions are represented as 

two structures[5,14]. 

Case1: 

      CtSzRyQxPBtNzMyLxKAtzyxf  22 )()(),,,( ，   (11) 

 

Substituting Eq.(11) into Eq.(3), f(x,y,z,t) can be obtained which is expressed as 
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           (13) 

where A, B, C, K, L, M, P, Q and R are real constants. Accordingly, the lump solutions of Eq.(1) can be 

obtained through Eq.(2) 

           .)),,,(ln(2),,,(,)),,,(ln(2),,,( 5544 xx tzyxftzyxutzyxftzyxu         (14) 

     Case2: 

CtSzRyQxPBtNzMyLxKAtzyxf  )cos()(),,,( 2
,    (15) 
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Similarly, the expression for ),,,( tzyxf  can be found and expressed as 
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where B,C,K,L,P,Q and S are real constants. The lump breather solutions of Eq.(1) can be written as 

.)),,,(ln(2),,,(,)),,,(ln(2),,,( 7766 xx tzyxftzyxutzyxftzyxu           (18) 

III．The propagation behaviors of breather waves 

     From 
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find that by properly selecting the parameters, one can obtain breather waves in different directions. In 

Fig.1, there are a shock wave along the X direction and breather waves along the Y direction, forming a 

waterfall structure. 

 

 

 

 

 

 

 

 

 

 

  Fig. 1: The breather solitary wave solution u 1 (x,y,x,t) with C = 3, G = 6, P =12 , Q = 1, L = 1, R = 3 
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concerned, a single solitary wave forms a breathing effect in the x direction, and then form a continuous 

solitary wave chain ( see Fig.2 ). This structure has physical application value, such as the transmission of 

electronic or optical signals. 

 

 

Fig. 2: The breather solitary wave solution ),,,(2 tzyxu  with A = 1, C = 3, G = 6, L =
3

1
, 

M = 2, P =
2

1
 , Q = 1, R = 3 and zyY 2

3

1
  when t = 0 and t = 1. 

 

 

Fig. 3: The lump solution ),,,(4 tzyxu  with A = 2, B = 2, C = 6, K = 1L = 1, M = 5, P = 3 and 

       zyxX 5 , zxY
3

10
3   when t = 0 and t = 3. 

Fig.3 is profiles of lump solution ),,,(4 tzyxu  when t = 0 and t = 3. From the time and coordinate 

changes, we clearly see the movement of this wave. After this wave is superimposed with a periodic wave, 

a lump breather wave is formed ( see Fig.4 ). This breather waves are sometimes severely destructive, for 

example, if water waves at sea form this breathing effect, they will cause continuous impact damage to 

obstacles. However, in practical applications, if people want to enhance signals, they can also be 

generated using this structure. 
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Fig. 4: The breather lump solution ),,,(6 tzyxu with B = 4, C = 6, K = 1, L = 2, P = 2, S = 1 and 

zyxX 52  , zyxY 1442   when t = 0 and t = 4. 

 

IV．Conclusion 

The (3+1)-dimensional generalized shallow water equation is similar to many other non-linear 

equations with breather waves, such as breather solitary waves, breather lump waves. Some breather 

waves have application value, and some breather waves are destructive. Revealing these nonlinear 

phenomena has physical application significance. One question deserves further consideration: how to 

multi-dimensionally characterize the propagation of multi-dimensional waves? 
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