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Abstract: Exoskeleton devices have a wide range of therapeutic and assistive utilities in life and they can 

provide essential support for limb movements with increased strength and endurance. This paper is presented to 

review the development of different approaches in controller design, actuation method, and transmission for 

exoskeletons. Here, the coupled nonlinear dynamics of the user and exoskeleton are a significant factor in 

developing and realizing effective control algorithms. So, after a short review of dynamic modeling of an 

exoskeleton, the application of some common controllers is provided. Also, due to the direct interaction of the 

user's body, it is necessary to utilize appropriate and convenient hardware components. In addition, a suitable 

combination of actuator and transmission systems can noticeably improve the performance, precision, and 

functionality of the robot. This review is represented to aid researchers in the fields of robotic therapy and 

exoskeleton devices in ascertaining their design process. 
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I. Introduction 

 

The patients with neurological disorders caused by diseases or injuries, in addition to the elderly, may 

have a lack of control, muscle weakness, and other kinds of disabilities [1]. Lower and upper limb dysfunction is 

a common complication in these people. They might experience different probable effects, like insufficient 

force/torque at the hip joints, unnatural gait patterns, and poor quality of life. Such impairments may limit an 

individual’s independence in performing activities of daily living and cause them to face limitations in social 

participation, mobility, and self-care [2-4]. The application of rehabilitation robotic systems has become one of 

the most promising approaches to assist individuals with disabilities. 

Robot-assisted therapy is an innovative kind of physical therapy using different kinds of robotic 

devices. These robots are capable of enabling the implementation of intensive, repeatable, accurate, quantifiable 

and patient-tailored movement therapy, and physical training [5-7]. The exoskeleton is a type of rehabilitation 

robotic system, which can be worn by the users and is connected to them at multiple points. The joints of the 

robot have a one-to-one correspondence with the human joints, and each joint is guided along a designed 

trajectory [8, 9]. Due to their capacity to provide precise and adaptive movement assistance, exoskeletons have 

demonstrated extensive feasibility and clinical potential in assisting the physical therapeutic process [10, 11]. 

These robots can be developed for medical and/or non-medical applications. Medical applications focus on gait 

recovery, motor performance, and rehabilitation therapy for the elderly, patients with a stroke and spinal cord 

injury, and other related diseases or injuries that could have muscle weakness [12, 13]. On the other hand, non-

medical applications focus on haptic interfaces or providing additional strength for more demanding tasks. It can 

be used on human performance augmentation, improving the physical abilities of individuals during walking, 

and manual handling of heavy goods [14, 15]. 

The resulting diversity between the different exoskeletons can be illustrated by the elaborate overviews on 

the control algorithm, how the user intention is detected and intention detection systems they use, the actuation 

technology, and hardware components of the device [16, 17]. These choices have an impact on the overall robot 

performance, which includes: ease of adoption by the user, physical burden exerted on the user, required level of 

external assistance before and during operation, operating time, and eventually cost of the device. Accordingly, 

this paper is presented to review some commonly used methods in the software and hardware design of 

exoskeleton robots. In this review, first, the role of the control system in exoskeletons is studied and examples of 

common control algorithms are provided. Then, the function and examples of the commonly used actuator and 

transmission types are provided. Finally, this document is terminated with a discussion to commit an overview 

of the represented topics.  
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II. Controller design 

 

To study the importance of the control system, an overview of the exoskeleton dynamic model is presented first.  

 

1.1.  Dynamic modeling 

As is shown in Fig. 1, an exoskeleton robot either for upper or lower limb application can be generally 

considered with three links (        ) and three joints (        ). 

 

Let's consider  ( ) as the mass matrix,  (   ̇) as the Coriolis's matrix,  ( ) as the gravity vector, and 

  as the DOF of the exoskeleton and the supported human-limb if exoskeleton is sufficiently rigid. Also the 

parameters  ,  ̇, and  ̈ represent the position, velocity, and acceleration vectors of the exoskeleton respectively. 

So then, based on the Lagrange dynamics method, the torque requirement for the exoskeleton as a vector      is 

given by equation (1).  

    ( )  ̈      (   ̇)  ̇      ( )       (1) 

If we assume axes of human extremity are perfectly aligned with those of the exoskeleton, then  ,  ̇, 

and  ̈ vectors would be the same for human as well. Therefore, the required torque    for human extremity is 

given by equation (2). 

  ( )  ̈  [  (   ̇)      ] ̇    ( )      (    )          (2) 

where      and       represents the diagonal optional damping and stiffness matrix of the human,    is the most 

recent joint position, and      is the optional torque applied by the human. For complete assistance of the human 

limb by the exoskeleton, the net torque requirement        is given by equation (3) [18-20]. 

      ( )  ̈  [      (   ̇)      ] ̇        ( )      (    )              (3) 

1.2.  Control system 

As can be seen, the dynamics of human limbs and exoskeleton are not only nonlinear but uncertain as well. 

The assistance magnitude and duration and its onset timing are key factors for the control system, and the 

exoskeleton joint angles and torques shall be online modified according to the user's conditions. With s suitable 

control approach, the exoskeleton can generate the assistive torques as needed, and the joints of the human–

exoskeleton system can share the same motions in a comfortable and safe mode [21]. Also, it is necessary to 

optimize the training paradigm so a user can receive beneficial treatments to improve mobility and 

musculoskeletal health. The essence of training paradigms is how the robots interact with the patients from 

signal perception to physical contact [22]. For designing a better application of the rehabilitation robot system, 

the training paradigms are classified according to several aspects that should be included in the control system. 

Some of these aspects refer to the user’s status during interaction and the properties of force applied to the limb 

[23, 24]. 

Link 1 Upper-arm/Thigh 

Link 2 Forearm/Shin 

Link 3 Hand/Foot 

Joint 1 Shoulder/Hip 

Joint 2 Elbow/Knee 

Joint 3 Wrist/Ankle 

 
Figure 1: A general scheme of an exoskeleton robot 
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The adaptive control method is widely used for exoskeletons due to its robustness and accurate tracking 

errors even in the presence of model uncertainties and changes in the dynamics of the exoskeleton. To provide 

forearm movement assistance, a fuzzy-based adaptive back-stepping control method is developed for an 

exoskeleton in [25]. A nonlinear adaptive controller is used as a backlash compensation in [26] to improve the 

accuracy in position tracking by compensating for time-varying backlash hysteresis and continuously updating 

the model parameters. Adaptive estimators are used in [27, 28] to compensate for the disturbance torques caused 

by input nonlinearities of an exoskeleton. Adaptive position/force control can be used to dynamically identify 

the robot’s nonlinear features and to enable the movement intention-directed trajectory adaptation [29, 30]. An 

adaptive integral terminal sliding mode controller is designed in [31] to guarantee trajectory tracking accuracy 

of exoskeleton when assisting disabled patients to execute arm rehabilitation training. To support the individuals 

with a disability to perform repetitive rehabilitation training, a neural-fuzzy adaptive control algorithm is 

proposed in [32] for trajectory tracking control with parametric uncertainties and environmental disturbances for 

arm movement assistance. 

Assistive or assist-as-needed (AAN) refers to control methods based on assisting the user only as much as 

needed to successfully perform a specific task. It enables the user with consistent effort and active involvement 

by providing minimal robotic assistance for completing the task execution [33-35]. In the design of AAN 

strategies, the patient’s strength is somehow evaluated, e.g. by using a gameplay interface, and the required 

amount of assistance is determined accordingly [36, 37]. AAN can boost the voluntary participation of the user 

by assisting according to the ability of the wearer in performing the assigned task. In [38], an adaptive torque 

controller based on a generalized fuzzy model was integrated into the control loop of an exoskeleton to ensure 

that the assistance is accurately supplied to the user. 

One way to modulate the assistance provided by the robotic device is to modify the mechanical impedance 

generated by the exoskeleton. The impedance control is a strategy that can realize compliant behavior in the 

robotic manipulators, where the impedance is defined as any dynamic operator that outputs a force/torque from a 

linear/angular position or velocity input [35, 39]. One impedance control to be considered is the impedance 

control based on joint space formulation which avoids problems that might arise from inverse dynamics 

calculations. An alternative option to a joint space is an end-point space formulation, in which the reference 

trajectory is defined according to an anatomical landmark around an end-point [40-42]. This method has been 

used for a lower limb exoskeleton to control the magnitude and direction of the forces required in task 

trajectories [42] and to assist in walking and maintain walking stability was developed in [43]. In [44], the 

integral impedance shaping algorithm is designed to obtain a desired shape for the frequency response 

magnitude and achieve the desired dynamic response. To obtain the optimal stiffness parameters of the 

impedance controller, a model predictive control method is designed in [45] so it can maximize the patient’s 

active participation by increasing their joint torques. 

 

III. Hardware system 

Analysis of the hardware system of the robot is an important step in the fabrication of an exoskeleton 

system. For designs that focus on the hardware parts, they may work on the safety issues of the mechanism and 

the portability or flexibility of devices. Some special matters like the function and application of the robot need 

to be paid attention to. For example, in a hand exoskeleton, safety becomes more essential because any 

mechanical problems would do serious harm to the human hands and fingers. Or, a clinical device can be used 

for the rehabilitation process at the clinic with a reduced active workload for the professional caregiver [46]. 

The combination of actuator and transmission is a major part of hardware design of exoskeletons. 

 

1.3. Actuator types 

The actuation system plays a significant role during the development of an exoskeleton robot because it 

generally affects the portability, output speed and force/torque, and efficiency of the device. According to 

studies, electrical and pneumatic motors have represented more application in exoskeletons.  

Electrical motor: The electrical motor has widely been used in the design of exoskeletons, due to its advantages 

such as availability, fast operations using high-speed motors, precision, and higher controllability using 

advanced motion control. For assistance applications, the lower torque-to-speed ratios of electrical motors need 

to be reduced to coincide with the higher ratio demands for human movement. As a result, gearheads are added 

to reduce the high speeds, adding backlash, and reducing the inherent back-drivability of the device [47]. The 

series elastic actuator (SEA) is generally composed of an electric motor, a compliant element, a drive, and a type 

of transmission. SEAs have the advantages of low intrinsic output impedance, high force fidelity and back-

drivability, good force control bandwidth, a low-pass filter, natural torque sensor and the possibility of energy 

storage, and the capability of storing energy in the flexible elements [48, 49]. Compliant elements such as 

springs can be implemented into the actuators to reduce the total mechanical impedance. SEA can measure 

external torques directly, employing a torsional spring coupled directly to the user’s joint, in series with the joint 
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actuator. In such systems, the instantaneous external joint torque is obtained from the product of the SEA’s 

torsional spring deformation and the known spring constant [50]. SEA can be used in exoskeletons to assist hip 

flexion and extension movements of individuals with heavy-duty tasks or to reduce the metabolic cost of healthy 

individuals during walking [48]. 

Pneumatic motor: This motor mainly contains a rubber tube and two closed ends. One end is usually 

connected to a valve to regulate the pressure inside the motor, while the other exerts an axial-direction 

contractile force. This actuator has advantages such as fewer requirements of maintenance, inherent compliance, 

and safety features and can be stopped under a load without causing damages. The pneumatic muscle actuators 

are intrinsically compliant, lightweight, act similar to natural muscles with high power-to-weight ratios [51, 52]. 

The disadvantages of pneumatic actuation are noise, size, and lower accuracy because the actuators are difficult 

to control for their time variability and nonlinear nature. To solve the nonlinear characteristics during operation, 

an adaptive back-stepping sliding mode control [53] and an iterative feedback tuning control scheme [54, 55] 

were designed to estimate the external disturbance and to tackle the human-exoskeleton uncertainties in 

rehabilitation. Antagonistic configuration can provide bidirectional assistance to the patient’s joints. One 

pneumatic motor antagonistic pair consists of two motors connected through a cable and a pulley. By regulating 

the pressure inside each motor, the configuration can provide one rotational DOF assistance and increase the 

torque and motion range of the joint. This configuration is used in the shoulder [56] and knee [57] exoskeletons 

to help patients to complete the assigned movement tasks. Due to the high stiffness output and low inertia force, 

parallel pneumatic motors are designed to achieve multi-DOF motion from one actuating joint. This 

configuration has been used in ankle [58], knee [59], and waist [60] exoskeletons for multi-DOF joint recovery. 

Fig. 2 shows examples of exoskeleton robots actuated by electrical and/or pneumatic motors. 

 

 

Functional electrical stimulation: This technology has recently been used to assist users in producing physical 

movements, the recovery of motor functions, and to facilitate the individual's muscle contraction training. 

Muscle contractions can be orchestrated to produce coordinated grasp movement, thumb positioning, wrist 

extension/flexion, forearm pronation, and elbow extension for patients with spinal cord injury [62, 63]. 

Functional electrical stimulation (FES) improves the plasticity of the cerebral cortex and can be easily 

performed by therapists because it does not require extensive manual operations [64]. Recently, the modular 

organization of multiple muscle activations has led to the formulation of synergy-based FES strategies. This 

approach provides a feasible solution for multi-channel FES control using residual muscle activities from the 

patient [65]. In these systems, FES can selectively administer therapeutic feedback responses only when the 

correct brain signals are detected [66, 67]. A study on a traumatic spinal cord injury patient revealed the role of 

FES in performing coordinated reaching and grasping movements using his own paralyzed arm and hand [68]. 

FES therapy targeting the extension of the affected limb can be effective in enhancing reduction in vertical 

subluxation, improve shoulder flexion and abduction, and hand functional recovery of stroke patients [69, 70]. 

 

 

 
(a) 

 
(b)  

 
(c) 

 
(d) 

Figure 2: Examples of the use of electrical motor in (a) lower limb [49] and (b) upper limb [61]; and 

pneumatic motor in (c) lower limb [57] and (d) upper limb [51] exoskeletons 
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1.4. Transmission 

The transmission method to be used is mostly a consequence of the choices of the actuator. For example, 

along with electric motors, transmission may include gear drives, cable drives, belt drives, or ball screws. In 

pneumatic motors, pneumatic piston and cylinder or cable drives are used for transmission. Also, transmission 

methods for hydraulic and hybrid actuators vary according to the application [71]. 

The cable is widely used as the transmission method in exoskeletons, including the pulley cable and Bowden 

cable. Pulley cable systems are spatially constrained and require a continuous control of cable tension to 

maintain traction on the pulleys, which limits the use [72, 73]. On the other hand, Bowden cable systems have 

the advantages of simplicity, dexterity, and essentially flexibility, but introduce variable and high friction forces 

dependent on curvature. This cable can be used to transmit remote mechanical power through the narrow 

tortuous space by the relative motion between the inner cable and outer hollow sheath. The driving torque from 

the motor can be transmitted to the exoskeleton joint via the inner cables attached to the proximal and distal 

grooved pulleys [32]. An antagonistic pair of Bowden cables are used in [74] coupled with SEA, to effect 

flexion and extension movements of the exoskeleton. This cable consists of a proximal stage, extending from the 

actuator to a coupling module worn on the upper arm, and a distal stage, which directly drives each of the 

exoskeleton joints. Fluidic transmissions are generally more efficient for larger channel diameters and can 

provide a more efficient alternative compared to a similar cable mechanism [75]. In comparison with hydraulics, 

a pneumatic transmission can offer faster responses due to the use of low-viscosity fluids [76]. The linkages are 

light, convenient, and can be easily controlled in a generated trajectory. On the one hand, the problem of 

coincidence of the rotational axis can be solved by using the cross-joint structure. Also, the complexity of the 

device can be reduced by using the linkage structure [77]. Fig. 3 shows exoskeletons equipped by Bowden cable 

and/or linkage.  

 

IV. Discussion 

 

The first step in designing an exoskeleton robot is to determine its application, whether this is for a 

therapeutic or assistance application. Each of these applications requires special adjustments in the control 

system parameters and a different trajectory and training paradigm. The control system may focus on error 

convergence in trajectory tracking or may utilize an observer for disturbance rejection. In addition, the choices 

of actuator and transmission can have a noticeable impact on the functionality, safety, and performance of the 

device. In this paper, the function and application of different common approaches in controller design, 

actuation method, and transmission for exoskeletons were studied to assist researchers in establishing their 

schemes and design procedure. Future work in this area is to evaluate and compare the clinical results for 

different types of exoskeletons.  
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