Relation between *-variety and conjunctive variety of *l*-fuzzy languages

Dr.Ajitha Kumari K

Associate Professor, Department of Mathematics, B.J.M.Govt.College, Chavara, Kollam, Kerala, 691583, India.

email: ambiliragamalika@gmail.com

Abstract: In this paper, we show that any *-variety of *l*-fuzzy languages is a conjunctive variety of (idempotent) semiring recognizable *l*-fuzzy languages. we provide some examples of semiring recognizable *l*-fuzzy languages. We also prove that the class of left singular *l*-fuzzy languages is *-variety and conjuctive variety of *l*-fuzzy languages.

Key words: Generalized fuzzy languages, Left singular *l*-fuzzy languages,

*-variety of *l*-fuzzy languages, Conjunctive variety of *l*-fuzzy languages.

I. INTRODUCTION

The theory of fuzzy language was developed as a generalization of the classical notion of (crisp)languages. The concept of fuzzy automaton was introduced by Wee in 1967. More on recent development of algebraic theory of fuzzy automata and formal fuzzy languages can be found in the book by Mordeson and Malik [5]. The varieties of fuzzy languages were introduced by Petkovic [6]. Semiring recognizable languages was first studied by Polak [8]. In [9], he introduced the concept of syntactic semiring of a language and studied its properties. Also he established a one-one correspondence between the lattices of all conjunctive variety of languages and pseudovariety of finite idempotent semirings. We introduce the notion of *-variety of monoid recognizable l-fuzzy languages in [3]. In [2] we introduce the notion of variety of semiring

recognizable *l*-fuzzy languages. Also we obtain a one to one correspondence between varieties of semiring recognizable *l*-fuzzy languages and all pseudovarieties of finite idempotent semirings.

In this paper we give a relation between *-variety and conjunctive variety of *l*-fuzzy languages. We prove that every *-variety of *l*-fuzzy languages is a conjunctive variety of *l*-fuzzy languages. we describe left singular *l*-fuzzy languages. We prove that the set of all left singular *l*-fuzzy languages is *-variety and conjunctive variety of *l*-fuzzy languages.

II. PRELIMINARIES

In this section we recall the basic definitions, results and notations that will be used in the sequel. All undefined terms are as in [4, 5, 7, 10]. A lattice is a partially ordered set in which every subset consisting of two element has a least upper bound and a greatest lower bound. A lattice l is called complemented if it is bounded and if every element in l has a complement. A lattice l is called a complete lattice if every nonempty subset of l has greatest lower bound and least upper bound in l.

Definition 2.1 (cf. [9]). An idempotent semiring is a nonempty set S together with two binary operations + and \cdot and two constant elements 0 and 1 such that

- i) (S, +, 0) is a commutative idempotent monoid.
- ii) (S, 1) is a monoid.
- (iii) the distributive laws $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$ holdfor every $a, b, c \in S$.
- iv) $0 \cdot a = a \cdot 0 = 0$ for every a.

Let \mathcal{A} be a finite set. When we deal with languages \mathcal{A} is called an alphabet and elements of \mathcal{A} are called letters. A finite sequence of letters in \mathcal{A} is called a word. The length of the word w is the number of letters of \mathcal{A} occurring in w. A word of length zero is called empty word and is denoted by ε . \mathcal{A}^+ denotes the set of all nonempty words over an alphabet \mathcal{A} and $\mathcal{A}^* = \mathcal{A}^+$ \cup $\{\varepsilon\}$ is a monoid under the operation concatenation, called free monoid over \mathcal{A} . A subset of \mathcal{A}^* is called the language \mathcal{L} over an alphabet \mathcal{A} .

Let $F(A^*)$ denote the set of all finite subsets of A^* . This set equipped with the operations usual union and multiplication $U \cdot V = \{uv \mid u \in U, v \in V\}$ form the free idempotent semiring over the alphabet A.

Let l be a complete complemented distributive lattice. Any function λ from A^* into l is called a l-fuzzy language over the alphabet A.

The complement $\overline{\lambda}$ of a *l*-fuzzy language $\overline{\lambda}$ is defined as $\overline{\lambda}(u) = \lambda(u)$ where $\lambda(u)$ denotes the complement of $\lambda(u)$ in l.

For *l*-fuzzy languages λ_1, λ_2 over A, their join (V) and meet(Λ) are defined by $(\lambda_1 \vee \lambda_2)(u) = \lambda_1(u) \vee \lambda_2(u)$ and $(\lambda_1 \wedge \lambda_2)(u) = \lambda_1(u) \wedge \lambda_2(u)$.

Let λ_1 , λ_2 be *l*-fuzzy languages over A. Then their left and right quotients are defined by

$$(\lambda_1^{-1}\lambda_2)(u) = \bigvee_{v \in A^*} (\lambda_2(vu) \wedge \lambda_1(v)), \ u \in A^*.$$

and

$$(\lambda_2 \lambda_1^{-1})(u) = \bigvee_{v \in A^*} (\lambda_2(uv) \wedge \lambda_1(v)), u \in A^*.$$

Let A and B be finite alphabets and $\varphi: A^* \to B^*$ be a homomorphism. Let λ be a l-fuzzy language over B. The inverse of λ under φ is a l-fuzzy language $\lambda \varphi^{-1}$ over A defined by $(\lambda \varphi^{-1})(u) = \lambda(\varphi(u)), u \in A^*$.

Let $c \in l$, then the scalar product $c \cdot \lambda$ of the *l*-fuzzy language λ is defined as $(c \cdot \lambda)(u) = c \wedge \lambda(u)$.

Let λ be a *l*-fuzzy language over A. The *c*-cut of λ is the crisp language λ_c defined by $\lambda_c = \{u \in A^* \mid \lambda(u) \ge c\}$.

A family of recognizable *l*-fuzzy languages is a *-variety of *l*-fuzzy languages, if it is closed under joins, meets, complements, scalar products, quotients, inverse homomorphic images and cuts.

Let λ be a l-fuzzy language over A. The function $\lambda_{min}: F(A^*) \to l$ defined by $\lambda_{min}(U) = \bigwedge_{u \in U} \lambda(u), U \in F(A^*)$ is called the generalized fuzzy language determined by λ . If |U| = 1 then $\lambda_{min}(u) = \lambda(u)$. So we can view λ_{min} as a generalization of λ .

Let $\lambda_{1^{min}}$ and $\lambda_{2^{min}}$ be generalized fuzzy languages determined by λ_1 and λ_2 respectively. Then their meet, left quotient and right quotient are defined as follows.

For
$$U \in F(A^*)$$
, $(\lambda_{1 \min} \wedge \lambda_{2 \min})(U) = \lambda_{1 \min}(U) \wedge \lambda_{2 \min}(U)$.

$$(\lambda_{1min}^{-1}\lambda_{2min})(U) = \bigvee_{v \in A^*} (\lambda_{2min}(vU) \wedge \lambda_{1min}(v)),$$

$$(\lambda_{2min}\lambda_{1min}^{-1})(U) = \bigvee_{v \in A^*} (\lambda_{2min}(Uv) \wedge \lambda_{1min}(v)).$$

Let A and B be finite alphabets and φ from $F(A^*)$ to $F(B^*)$ be a semiring homomorphism and λ_{min} be a generalized fuzzy language determined by a l-fuzzy language λ over B. Then the inverse homomorphic image of λ_{min} is a l-fuzzy subset $\lambda_{min}\varphi^{-1}$ of $F(A^*)$ defined by

$$(\lambda_{min}\varphi^{-1})(U) = \lambda_{min}(\varphi(U)), U \in F(A^*).$$

Theorem 2.2. l Let $\lambda, \lambda_1, \lambda_2$ be l-fuzzy languages over A. Then

(i)
$$(\lambda_1 \wedge \lambda_2)_{min} = \lambda_{1min} \wedge \lambda_{2min}$$
.

(ii)
$$(\lambda_1^{-1}\lambda_2)_{min} = \lambda_{1min}^{-1}\lambda_{2min}$$
.

(iii)
$$(\lambda_2 \lambda_1^{-1})_{min} = \lambda_{2min} \lambda_{1min}^{-1}$$
.

Theorem 2.3. Let A and B be finite alphabets and φ from $F(A^*)$ to $F(B^*)$ be a semiring homomorphism. If λ is a l-fuzzy language over B, then $(\lambda \varphi^{-1})_{min} = \lambda_{min} \varphi^{-1}$.

Definition 2.4. Let lC be a family of l-fuzzy languages and lC_{min} be the family of associated generalized l-fuzzy languages. We say that lC is a conjunctive variety if lC_{min} is closed under finite meet, quotients and inverse homomorphic images.

III. Relation between Varieties of *l*-Fuzzy Languages

Here we give a relation between *-variety and conjunctive variety of *l*-fuzzy languages.

Theorem 3.1. Every *-variety of l-fuzzy languages is a conjunctive variety of l-fuzzy languages.

Proof. Let $l\mathscr{C}(A^*)$ be a *-variety of l-fuzzy languages over A. Then it is closed under join, meet, complements, quotients, c-cuts, inverse homomorphic images and scalar products. Let $l\mathscr{C}_{min}(A^*)$ be the family of generalized l-fuzzy languages determined by elements in $l\mathscr{C}(A^*)$. If $\lambda_1, \lambda_2 \in l\mathscr{C}(A^*)$, then $\lambda_{1min}, \lambda_{2min} \in l\mathscr{C}_{min}(A^*)$. Since $l\mathscr{C}(A^*)$ is a *-variety of l-fuzzy languages, $\lambda_1 \wedge \lambda_2$ belongs to $l\mathscr{C}(A^*)$. Thus $(\lambda_1 \wedge \lambda_2)_{min} \in l\mathscr{C}_{min}(A^*)$. But $(\lambda_1 \wedge \lambda_2)_{min} = \lambda_{1min} \wedge \lambda_{2min}$, by Theorem 2.2. Therefore $\lambda_{1min} \wedge \lambda_{2min} \in l\mathscr{C}_{min}(A^*)$. Hence $l\mathscr{C}_{min}(A^*)$ is closed under meet.

Similarly if $\lambda_1, \lambda_2 \in l\mathscr{C}(A^*)$ then $\lambda_1^{-1}\lambda_2, \lambda_2\lambda_1^{-1} \in l\mathscr{C}(A^*)$. Thus $(\lambda_1^{-1}\lambda_2)_{min}, (\lambda_2\lambda_1^{-1})_{min} \in l\mathscr{C}_{min}(A^*)$. By Theorem 2.2, we have $(\lambda_1^{-1}\lambda_2)_{min} = \lambda_{1min}^{-1}\lambda_{2min}$ and $(\lambda_2\lambda_1^{-1})_{min} = \lambda_{2min}\lambda_{1min}^{-1}$. Hence we get $\lambda_{1min}^{-1}\lambda_{2min}, \lambda_{2min}\lambda_{1min}^{-1} \in l\mathscr{C}_{min}(A^*)$. Therefore $l\mathscr{C}_{min}(A^*)$ is closed under quotients.

Let $\varphi : F(A^*) \to F(B^*)$ be a semiring homomorphism and let λ be a l-fuzzy language over B. Since $l\mathscr{C}(A^*)$ is a *-variety, $\lambda \varphi^{-1}$ belongs to $l\mathscr{C}(A^*)$. Thus $(\lambda \varphi^{-1})_{min} \in l\mathscr{C}_{min}(A^*)$. By Theorem 2.3, we have $(\lambda \varphi^{-1})_{min} = \lambda_{min}\varphi^{-1}$. Thus $\lambda_{min}\varphi^{-1} \in l\mathscr{C}_{min}(A^*)$. Hence $l\mathscr{C}_{min}(A^*)$ is closed under inverse homomorphic images. Thus $l\mathscr{C}(A^*)$ is a conjunctive variety of l-fuzzy languages.

Corollary 3.2. Every *-variety of fuzzy languages is a conjunctive variety of fuzzylanguages.

Proof. Since ([0, 1], max, min) is a complete, complemented distributive lattice, the result follows from the Theorem 3.1.

IV. Left Singular l-fuzzy laguage

Definition 4.1. A l-fuzzy laguage $\lambda : A^+ \to l$ is said to be left singular if it satisfies the condition $\lambda(puvq) = \lambda(puq)$ for all p, q, u, v in A^+ .

The class of left singular l-fuzzy languages on A^* is denoted by $LSlFL(A^*)$.

Example 4.2. Let $l = (\{1, 2, 3, 6\}, LCM, GCD)$ be a complete distributive lattice and $A = \{a, b\}$. Let $\lambda : A^+ \to l$ be defined by

$$\lambda(u) = \begin{cases} 2 & \text{if } u \in aA^+b \\ 3 & \text{if } u \in bA^+a \\ 1 & \text{otherwise.} \end{cases}$$

Then λ is a left singular l-fuzzy language.

Lemma 4.3. Let $\lambda \in LSIFL(A^*)$, then $\overline{\lambda} \in LSIFL(A^*)$

Proof. Since $\lambda \in LSlFL(A^*)$, we have $\lambda(puvq) = \lambda(puq)$ for all $p, q, u, v \in A^*$. So

$$\overline{\lambda}(puvq) = \overline{\lambda(puvq)}$$

$$= \overline{\lambda(puq)}$$

$$= \overline{\lambda}(puq),$$

for all $p, q, u, v \in A^*$. Thus $\overline{\lambda} \in LSlFL(A^*)$. Hence $LSlFL(A^*)$ is closed under complements.

Lemma 4.4. $LSIFL(A^*)$ is closed under scalar multiplication.

Proof. Let $\lambda \in LSlFL(A^*)$ and $c \in l$, then $(c \cdot \lambda)(puvq) = c \wedge (\lambda(puvq))$

$$(c \cdot \lambda)(puvq) = c \wedge (\lambda(puvq))$$
$$= c \wedge \lambda(puq)$$
$$= (c \cdot \lambda)(puq),$$

for all $u, v, p, q \in A^*$. Thus $c \cdot \lambda \in LSIFL(A^*)$. Hence $LSIFL(A^*)$ is closed under scalar multiplication.

The following result shows that $LSIFL(A^*)$ is closed under join and meet.

Lemma 4.5. Let $\lambda_1, \lambda_2 \in LSlFL(A^*)$. Then, $\lambda_1 \vee \lambda_2$ and $\lambda_1 \wedge \lambda_2$ are in $LSlFL(A^*)$.

Proof. Since $\lambda_1, \lambda_2 \in LSlFL(A^*)$, we have $\lambda_1(puvq) = \lambda_1(puq)$ and $\lambda_2(puvq) = \lambda_2(puq)$ for all $p, q, u, v \in A^*$. So

$$(\lambda_1 \vee \lambda_2)(puvq) = \lambda_1(puvq) \vee \lambda_2(puvq)$$

$$= \lambda_1(puq) \vee \lambda_2(puq)$$

$$= (\lambda_1 \vee \lambda_2)(puq) \text{ for all } p, q, u, v \in A^*.$$

Thus $(\lambda_1 \vee \lambda_2) \in LSlFL(A^*)$.

Since $\lambda_1 \wedge \lambda_2 = \overline{(\overline{\lambda_1} \vee \overline{\lambda_2})}$, we have $\lambda_1 \wedge \lambda_2 \in LSlFL(A^*)$.

Lemma 4.6. Let λ be a left singular l-fuzzy language on A^* , B be a finite alphabet and $\varphi : B^* \to A^*$ be a homomorphism. Then $\lambda \varphi^{-1}$ is a left singular l-fuzzy language over B where $\lambda \varphi^{-1}(u) = \lambda(\varphi(u))$ for all $u \in B^*$.

Proof. Since $\lambda \in LSIFL(A^*)$, we have $\lambda(puvq) = \lambda(puq)$ for all $p, q, u, v \in A^*$. So

$$(\lambda \varphi^{-1})(rxys) = \lambda(\varphi(rxys)) = \lambda(\varphi(r)\varphi(x)\varphi(y)\varphi(s))$$

 $= \lambda(\varphi(r)\varphi(x)\varphi(s)) = \lambda(\varphi(rxs))$
 $= \lambda \varphi^{-1}(rxs) \text{ for all } r, s, x, y \in B^*.$

Thus $\lambda \varphi^{-1}$ is a left singular l-fuzzy language over B.

From the above lemma it follows that $LSIFL(A^*)$ is closed under the inverse homomorphic images.

Lemma 4.7. Let $\lambda_1, \lambda_2 \in LSlFL(A^*)$. Then

- (i) $\lambda_1^{-1}\lambda_2 \in LSlFL(A^*)$ and
- (ii) $\lambda_2 \lambda_1^{-1} \in LSlFL(A^*)$.

Proof. (i) Since $\lambda_1, \lambda_2 \in LSIFL(A^*)$, we have $\lambda_1(puvq) = \lambda_1(puq)$ and $\lambda_2(puvq) = \lambda_1(puq)$

 $\lambda_2(puq)$ for all $p, q, u, v \in A^*$. So

$$\begin{split} (\lambda_1^{-1}\lambda_2)(puvq) &= \bigvee_{w \in A^*} \{\lambda_2(wpuvq) \wedge \lambda_1(w)\} \\ &= \bigvee_{w \in A^*} \{\lambda_2((wp)uvy) \wedge \lambda_1(w)\} \\ &= \bigvee_{w \in A^*} \{\lambda_2(wp)uq) \wedge \lambda_1(w)\} \\ &= \bigvee_{w \in A^*} \{\lambda_2(wpuq) \wedge \lambda_1(w)\} = (\lambda_1^{-1}\lambda_2)(puq) \end{split}$$

for all $p, q, u, v \in A^*$. Thus $\lambda_1^{-1}\lambda_2 \in LSIFL(A^*)$.

(ii) Similarly if $\lambda_1, \lambda_2 \in LSIFL(A^*)$, then $\lambda_2 \lambda_1^{-1} \in LSIFL(A^*)$. Thus $LSIFL(A^*)$ is closed under left and right quotients.

Lemma 4.8. Let $\lambda \in LSIFL(A^*)$ and $\lambda_c = \{u \in A^* : \lambda(u) \ge c\}$ for all $c \in I$. Then $LSIFL(A^*)$ is closed under the c-cut. (ie, $\chi_{\lambda_c} \in LSIFL(A^*)$ for all $c \in I$).

Proof. Since $\lambda \in LSIFL(A^*)$, we have $\lambda(puvq) = \lambda(puq)$ for all $p, q, u, v \in A^*$. So

$$puvq \in \lambda_c \Leftrightarrow c \leq \lambda(puvq) = \lambda(puq) \Leftrightarrow puq \in \lambda_c$$

for all $p, q, u, v \in A^*$. Hence $LSIFL(A^*)$ is closed under c-cut.

Theorem 4.9. $LSIFL(A^*)$ is a *-variety of 1-fuzzy languages.

Proof. Follows from Lemmas 4.3, 4.4, 4.5, 4.6,4.7 and 4.8.

Let $\lambda \in \mathit{LSIFL}(A^*)$ and λ_{min} be the generalized fuzzy language determined by

 λ . Then from the definition of λ_{min} , we have

$$\lambda_{min}(pUVq) = \bigwedge_{uv \in UV} \lambda(puvq)$$

$$= \bigwedge_{u \in U} \lambda(puq)$$

$$= \lambda_{min}(pUq),$$

for all $p, q \in A^*$ and $U, V \in F$ (A^*). Thus λ is left singular if and only if the generalized fuzzy language determined by λ satisfies the condition

$$\lambda_{min}(pUV q) = \lambda_{min}(pUq),$$

for all $p, q \in A^*$ and $U, V \in F(A^*)$.

The following result shows that $LSIFL_{min}(A^*)$ is closed under the operation meet \wedge .

Lemma 4.10. If λ_1 and λ_2 are in LSIFL(A^*), then $(\lambda_1 \wedge \lambda_2)_{min}$ belongs to LSIFL $_{min}(A^*)$.

Proof. Let $\lambda_1, \lambda_2 \in LSIFL(A^*)$ then $\lambda_{1min}(pUVq) = \lambda_{1min}(pUq)$ and

 $\lambda_{2min}(pUV\,q)=\lambda_{2min}(pUq)$, for all $p,q\in A^*$ and $U,V\in F(A^*)$. By the definition of \wedge , We have

$$(\lambda_{1min} \wedge \lambda_{2min})(pUV q) = \lambda_{1min}(pUV q) \wedge \lambda_{2min}(pUV q)$$

$$= \lambda_{1min}(pUq) \wedge \lambda_{2min}(pUq)$$

$$= (\lambda_{1min} \wedge \lambda_{2min})(pUq),$$

for all $p, q \in A^*$ and $U, V \in F(A^*)$. Thus $\lambda_{1min} \wedge \lambda_{2min} \in LSIFL_{min}(A^*)$. Since $(\lambda_1 \wedge \lambda_2)_{min} = \lambda_{1min} \wedge \lambda_{2min}$. So $(\lambda_1 \wedge \lambda_2)_{min}$ belongs to $LSIFL_{min}(A^*)$.

The following result shows that $LSIFL_{min}(A^*)$ is closed under quotients.

Lemma 4.11. If $\lambda_1, \lambda_2 \in LSIFL(A^*)$, then $(\lambda_1^{-1}\lambda_2)_{min}$ and $(\lambda_2\lambda_1^{-1})_{min}$ are in $LSIFL_{min}(A^*)$.

Proof. Let $\lambda_1, \lambda_2 \in LSIFL(A^*)$ then $\lambda_{1min}(pUVq) = \lambda_{1min}(pUq)$ and

 $\lambda_{2min}(pUVq) = \lambda_{2min}(pUq)$, for all $p, q \in A^*$ and $U, V \in F(A^*)$. By the definition

of left quotient, we have

$$\begin{split} \lambda_{1min}^{-1}\lambda_{2min}(pUVq) &= \bigvee_{w \in A^*} \left(\lambda_{2min}(w(pUVq)) \wedge \lambda_{1min}(w)\right) \\ &= \bigvee_{w \in A^*} \left(\lambda_{2min}(wp(UV)q) \wedge \lambda_{1min}(w)\right) \\ &= \bigvee_{w \in A^*} \left(\lambda_{2min}(wp(U)q) \wedge \lambda_{1min}(w)\right) \\ &= \bigvee_{w \in A^*} \left(\lambda_{2min}(w(pUq)) \wedge \lambda_{1min}(w)\right) \\ &= \lambda_{1min}^{-1}\lambda_{2min}(pUq), \end{split}$$

for all $p, q \in A^*$ and $U, V \in F(A^*)$. Thus $\lambda_{1min}^{-1} \lambda_{2min} \in LSlFL_{min}(A^*)$. Similarly we can prove that $\lambda_{2min} \lambda_{1min}^{-1}$ belongs to $LSlFL_{min}(A^*)$. Since $(\lambda_1^{-1}\lambda_2)_{min} = \lambda_{1min}^{-1} \lambda_{2min}$ and $(\lambda_2 \lambda_1^{-1})_{min} = \lambda_{2min} \lambda_{1min}^{-1}$, we have $(\lambda_1^{-1}\lambda_2)_{min}$ and $(\lambda_2 \lambda_1^{-1})_{min}$ belong to $LSlFL_{min}(A^*)$.

Lemma 4.12. Let A, B be finite alphabets, $\varphi : F(A^*) \to F(B^*)$ be a homomorphism and $\lambda \in LSIFL(B^*)$. Then $(\lambda \varphi^{-1})_{min} \in LSIFL_{min}(A^*)$.

Proof. We have

$$(\lambda_{min}\varphi^{-1})(pUVq) = \lambda_{min}(\varphi(pUVq))$$

 $= \lambda_{min}(\varphi(p)\varphi(U)\varphi(V)\varphi(q))$
 $= \lambda_{min}(\varphi(p)\varphi(U)\varphi(q))$
 $= \lambda_{min}(\varphi(pUq))$
 $= (\lambda_{min}\varphi^{-1})(pUq),$

for all
$$p, q \in A^*$$
 and $U, V \in F(A^*)$. Thus $\lambda_{min}\varphi^{-1} \in LSlFL_{min}(A^*)$.
Since $\lambda_{min}\varphi^{-1} = (\lambda\varphi^{-1})_{min}, (\lambda\varphi^{-1})_{min} \in LSlFL_{min}(A^*)$.

From the above lemma it follows that $LSIFL_{min}(A^*)$ is closed under inverse homomorphic images.

Theorem 4.13. LSIFL(A*) is a conjunctive variety of l-fuzzy languages.

Proof. By Lemma 4.10 and 4.11, $LSIFL_{min}(A^*)$ is closed under meet and quotients. By Lemma 4.12, $LSIFL_{min}(A^*)$ is closed under inverse homomorphic images. Hence $LSIFL(A^*)$ is a conjunctive variety of l-fuzzy languages.

Thus the set of all left singular l-fuzzy languages is *-variety and conjunctive variety of l-fuzzy languages.

REFERENCES

- [1] Ajitha Kumari K and Archana V P, On monoid recognizable *l*-fuzzy languages, International Journal of Research in Advent Technology, Vol.6, No.9, 2018, 2410–2413.
- [2] Ajitha Kumari.K, Ramesh Kumar.P, Conjunctive variety of *l*-fuzzy languages, International Journal of Applied Engineering Research, Vol. 14, No. 10, 2019, 2436–2441.
- [3] Ajitha Kumari.K, Ramesh Kumar.P, Variety of monoid recognizable l-fuzzy languages, International Journal of Advanced Research in Engineering and Technology, Vol.10, Issue 3, May-June 2019, 103-111.
- [4] G. Lallement, Semigroup and Combinatorial Applications, John-Wiley, New York, 1979.
- [5] J. N. Mordeson and D. S. Malik, Fuzzy Automata and Languages; Theory and Applications, Chapman & Hall CRC, 2002.
- [6] T. Petkovic, Varieties of Fuzzy Languages, Proc. 1st Inernational Conference on Algebraic Informatics, Aristotle University of Thessaloniki, Thessaloniki, 2005.
- [7] J. E. Pin, Varieties of Formal Languages, North Oxford Academic, 1986.

- [8] L. Polak, A classification of rational languages by Semilattice Ordered Monoids, Archivum Mathematicum(BRNO), Tomus 40, 2004, 395-406.
- [9] L. Polak, Syntactic semiring of a language, Proceedings 26th International symposium, Mathematical Foundations of Computer Science, 2001, 611-620.
- [10] Rakesh dube, Adesh Pandey, Retu Gupta, Discrete Structures and Automata Theory, Narosa Publishing House, New Delhi, 2007.
- [11] L.A.Zadeh, Fuzzy Sets, *Information and Control*, No. 8, 1965, 338–353. Ajitha Kumari.K, Ramesh Kumar.P, Conjunctive variety of *l*-fuzzy languages, *International Journal of Applied Engineering Research*, Vol.14, No.10, 2019,2436-2441

