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ABSTRACT : The Graph Isomorphism problem is an important problem that occur in many fields including 

computer science, chemistry, mathematics, image processing and geography.  Graphs are used to represent 

several situations and structures from real life, and we want to know that whether two graphs are same or 

different from a selected perspective. All competitive GI testing tools follow the so called “individualization-

refinement “procedure. Target cell selection play an important role within this procedure. In this study we have 

implemented four different target cell selectors using one of the best competitive GI tools, “traces” of Adolfo 

Piperno. The experiments we have conducted shows that the “largest” target cell selector performs better in 

terms of CPU time for most of the graphs, which have a group size greater than 2400. 
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I. INTRODUCTION 
The Graph Isomorphism problem is an important problem that occurs in many fields including 

computer science, chemistry, mathematics, image processing and geography (Somkunwar et al., 2017). Graphs 

can be used to represent several situations and structures from real life, and we want to know that whether two 

graphs are the same or different from a selected perspective. For instance, the graphs in the figure below are 

equal even though they seem to be different. 

 
Figure 1. A simple example of two isomorphic graphs 

  

The graph isomorphism problem is determining whether there is an isomorphism between two given 

graphs. GI has been a favorite discussion topic among algorithm designers since long time and described as a 

disease in 1976 by Read and Corneil (McKay et al., 2014).GI has several application areas. For instance, in 

chemistry, GI is used to identify a chemical compound within a chemical database.Image processing can be 

given as another application area of GI (Somkunwar et al.,2017). In image processing GI is used to match two 

different images. To do that, the input image first converted into graph. After obtaining the graph, graph 

isomorphism algorithms applied to decide whether input graph is same as one of the graphs of the database. 

The first program that could handle regular graphs with hundreds of vertices was the software of McKay that 

later became known as “nauty”. In literature, there exists hundreds of published GI algorithms. Up to date, the 

best performing algorithms follow “individualization-refinement” paradigm. This paradigm was introduced by 

Parris and Read (1969) and developed by Corneil and Gotlieb (1970)and Arlazarov. (1974) (McKay et al., 

2014). Currently “nauty “is being considered as the best performing algorithm package for small graphs while 

“Traces” is the leader for most of the difficult graph classes. In this study, our main objective is observing the 

effects of different target cell selectors on some of the difficult graph types by taking advantage of the “traces” 

software. To do this, we will first introduce graph and Graph Isomorphism Problem. Then, we will talk about 

the complexity of the GI. After that we are going describe what a target cell is and explain the importance of 

target cell selection in Graph Isomorphism Problem. In the last part of the section 2 we are going to describe 

principles behind the individualization-refinement based graph isomorphism testing algorithms and explain the 

working logics of some of the well-known graph isomorphism testing packages. 
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In upcoming section, we are going to introduce working principles of the “traces” software.Then we will 

mention about some of the difficult graph types for isomorphism testing.Moving forward we will describe four 

different target cell selection functions that we have implemented using “traces” software and then provide 

experimental results for each of them regarding to experiments that we have conducted on some of the difficult 

graph types. Finally, we are going to discuss the experimental results and conclude the thesis after talking about 

possible future works. 

 

II. LITERATURE REVIEW 
Graph Isomorphism Problem 

In this Section we introduce the Graph Isomorphism problem (GI), together with some fundamental 

notions and definitions, which will lead us to introduce the topic of this research. 

 

Graph. 
A graph is a tuple: 

G= (V ,E)  

where V represents the set of vertices and E represents the set of edges. 

 

 
Figure 2 . A Simple Graph 

 

For example, in the figure above, a graph including four nodes and four edges is shown. This graph can be 

expressed as: 

G= ({a,b,c,d}, {(a,b),(a,c),(c,d),(a,d)}) 

Given two graphs F and G, we say that F and G are isomorphic if there exists a bijection of vertices of F and G 

which preserves the edges. Clearly, two isomorphic graphs have the same number of vertices and edges. The 

basic but not efficient way to prove isomorphism is by checking all possible permutations of the vertices and 

checking whether there exists a one-to-one edge preserving mapping between the vertices of the two graphs 

(John et al.,1974). This is a brute force approach.To make the concept clearer, consider the Figure-2 and Figure-

3. 

 
Figure 3. Graph F 
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Figure 4. Graph G 

 

One can prove that these two graphs are isomorphic by trying all possible permutations of vertices of graph F. 

After trying all possible permutations, it is possible to say that these two graphs are isomorphic. A one-to-one 

mapping between the vertices of the graphs F and G is shown in Table 1. 

 

Table 1 

Mapping of Vertices 

 

 

 

 

 

 

 

 

 

 

 

Graph Isomorphism. 

Two graphs: 

 F=(VF,EF) and G=(VG,EG) 

are isomorphic if and only if there exist one to one mapping, 

ꬾ :VG →VG 

such that, 

∀u,v ∈ VF : (u,v) ∈ EF ↔ (ꬾ(u), ꬾ(v)) ∈ EG and (∀u ∈ VF : u ∈ EF↔ ꬾ(u) ∈ EG)  

An automorphism of a graph G means relabeling the vertices of the graph in such a way that the structure of the 

graph does not change (Somkunwar et al., 2017). For example, consider the graph in Figure 4. In this graph if 

we exchange the labels between the vertices F and C, the structure of the graph remains the same. 

 
Figure 5. A graph for automorphism example 

Vertices of Graph F Vertices of Graph G 

1 7 

2 6 

3 5 

4 4 

5 3 

6 2 

7 1 
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Figure 6. The automorphism of (C,F) for the graph in Figure 4 

 

Automorphism. 

An isomorphism between a graph and itself is defined as automorphism.Given a graph G=(V,E) a permutation 

γ: V → V which is an isomorphism from G to G is an automorphism of G.  

 

Automorphism Group. 

The set of automorphisms including the trivial one (the one that moves no label also referred as identity 

permutation) under composition is called automorphism group (Alfred, John& Jeffrey ,1974).  An 

Automorphism Group is denoted by Aut(G). 

 
Figure 7. A graph for automorphism example 

 

The automorphisms of the graph in Figure 2 can be written as: 

1. The identity permutation (maps each vertex to itself)Γ1 = (1) (2) (3) (4) (5) (6) 

2. Γ2 = ( 1 5) (2) (3) (4) (6) that swaps the vertices 1 with 5. 

3. Γ3 =  (1 ) (2 4) (3) (5) (6) that swaps the vertices 2 with 4. 

4. Γ3 =  (1 5) (2 4) (3) (6) that swaps the vertices 1 with 5 and 2 with 4. 

 

Babai has shown that the best bound for GI problem is in quasi-polynomial time (Somkunwar et al., 2017). 

Also, many works have been done for specific graph types. For some of these graph types of polynomial time 

solution is found.Kelly and Aho worked on trees and found a polynomial time algorithm for trees. Hopcroft 

found an algorithm that can solve GI for graphs (Hopcroft et al., 1974). Colbourn was also able to find an 

algorithm to solve GI on permutation graphs in polynomial time. Luks, proved that bounded valance graphs can 

be handled in polynomial time (Presa, 1974; Eugene et al., 1981).The most well-known and fastest ones of these 

software tools are; “nauty” of Brendan McKay, “Traces “of Adolfo Piperno, “bliss” of Tommi Juntilla and 

Petteri Kashi, “saucy” of Paul T. Darga, Karem A. Sakallah, and Igor L. Markov, “sinauto “and “conauto” of 

José Luis López Presa(Somkunwar ,2017; Krena et al., 2001).The common feature about the fastest 

implementations of GI testing tools is all they follow individualization/refinement approach. 

 

Individualization-Refinement Method. 

The individualization-refinement basically aims to classify the vertices of a given graph by similarity. 

It iteratively partitions or assign colors to vertices in a sequence of refinement rounds (colors have a predefined 

order). Refinement refers to assigning colors to the vertices of a graph due to some criteria. Most common 

criteria used for refinement process in the literature is considering the degrees of the vertices of the graph. 
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Partition. 

A partition is a colored form of a graph, where each vertex of a graph is colored.  

 
Figure 8. A partition 

 

In individualization refinement method, all vertices are assigned to the same color. Then in each refinement 

round, any two vertices a, b that still have the same color are assigned to different colors if and only if there 

exist some color c such that a and b have different number of neighbors of color c. The refinement process ends 

if in some refinement round we obtain what is called an equitable partition. 

 

Equitable Partition. 

An equitable partition is a colored graph where every two vertices of the same color are adjacent to the same 

number of vertices of each color (Greg et al., 2005). For example, if we look at Figure 8, we can see that every 

two vertices of the same color are adjacent to the same number of vertices of each color. Because of this we can 

say that the partition in Figure 7 is also an equitable partition.After obtaining the equitable partition, 

individualization-refinement based algorithms individualize a vertex of a color.  

 

Discrete Partition. 
A discrete partition is a colored graph where every vertex has a unique color. 

On the figure below, a discrete partition can be seen. 

 
Figure 9. A discrete (also equitable) partition 

 

To detect the isomorphism between two graphs, individualization-refinement based algorithms 

generate a search tree based on partition refinement. Then traverse the search tree of each graph and compare 

them. Two graphs are said to be isomorphic if and only if their search trees are isomorphic. The nodes of the 

tree are partitions. The root of the tree is initial partition. If a node corresponds to a discrete partition, then it is a 

leaf. If the node is not a discrete partition, then algorithm chooses a color (target cell) which is at least used 

more than once and individualizes one of the vertices from this color (assigns a unique color to the vertex) and 

then refines to get a child.   
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Target Cell and Importance of Target Cell Selectors. 

Target cell selection algorithms play an important role in the performances of individualization-

refinement based GI testing software tools. As we have previously mentioned, the most common approach to 

assign colors to vertices is considering the number of neighbors of the vertices. To understand the target cell and 

target cell selectors, we need to understand the concept of cells. 

 

Cell. 

A cell is a set that consists of the vertices of a partition which have same color.If we consider the 

Figure 8 the cells of the graph can be written as:3 6|1 5|2 7| 4|. Here the sign of “|” is used to express the end of 

the cells.The performance of the graph isomorphism testing software depends on the number of operation that 

graph isomorphism testing software performs to obtain a discrete partition. At this point, cell selectors play an 

important role. Basically, cell selector selects a cell between many cells depending on some criteria and rest of 

the software performs its operations starting from the vertices in that cell.  

To make the concept more solid let us consider the example below. Assume that we are working on a 

individualized-refinement based software and we have an equitable partition which is in Figure 8.  Then, the 

target cell selection function within the software must choose a cell depending on some strategy and return the 

index number of the beginning of the selected cell.Assume that our strategy is choosing the first largest cell. 

Then according to our strategy, the target cell selector chooses the cell |3 6|. Then, it individualizes vertex 3, 

which is the first vertex of the cell according to our example.  Then the new partition may look like as in the 

follows: 

 
Figure 10. New partition after individualization 

 

As we can see from the Figure 10, dark blue and green vertices do not follow the equitable partition definition 

(for instance while vertex 1 is adjacent to a light blue vertex 5 is not. This situation is also same for the green 

vertices). Because of this by refining one dark blue and one green vertex it is possible to obtain an equitable 

partition, which may look like the partition in Figure 9. An effective cell selector can lead to obtain a discrete 

partition with a smaller number of refinement operations and those it can enhance the performance of the graph 

isomorphism testing software. It is also possible to follow other target cell selection algorithms such as choosing 

the cell which is adjacent to maximum number of another cell or first smallest cell etc. All these different target 

cell selection strategies may lead to different numbers of refinement operations.  

 

III. METHODOLOGY 
Currently “nauty “is being considered as the best performing algorithm package for small graphs while 

“Traces” is the leader for most of the difficult graph classes. (Difficult graphs will be discussed in following 

sections).As we have explained within the previous sections target cell selection play an important role within 

the individualization-refinement method. The importance of the target cell selection can also be seen in the 

literature (Eugene, 1981; McKay et al., 2014).In literature there exist no work that discusses the effects of 

different target cell selection algorithms for different graph types.The goal of this thesis is observing the effects 

of the different choices of the target cell on “traces” software tool by conducting several experiments. 

 

Canonical Labelling and Working Principles of Individualizing-Refinement Based Software 

The canonical labeling or the canonical form of a graph G is a graph G’, which is isomorphic to G and 

represents the whole isomorphism class of .Simply, a canonical label is a unique representation of a graph and 

it literally behaves like a “label” for the graph. Most of the best performing GI testing algorithms aims the 

compute unique the canonical labels for the given graphs.Canonical labelling algorithms work on each 

compared graph and generate the canonical labels of them, independently from one another, and finally compare 
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them to detect isomorphism.A canonical member of an isomorphism class is a member that is chosen from that 

isomorphism class. The process of the finding the canonical label of a given isomorphism class is called as 

canonical labelling. Two labelled graphs which are isomorphic, said to be identical when they are canonically 

labelled.  

 

Individualization-Refinement Based GI Software Tools 

Most of the GI software are focused on developing practical GI algorithms to be able to solve the 

general problem efficiently. On one side there exist software tools that solves the GI by canonically labelling the 

graphs. Some of them can be enumerated as; “bliss” of Petteri Kashi and Tommi Juntilla, “nishe “of  Greg 

Tener, “nauty” of Brendan McKay and “traces” of Adolfo Piperno. On the other side there exist some tools that 

tries to find matches between two graphs by detecting symmetries. “Saucy” of Paul T. Darga, Karem A. 

Sakallah, and Igor L. Markov,software can be given as an example to this category. We need toanalyze the 

working principles of the Traces in means of the strategies that follow to solve GI. 

 

Traces 
“Traces” is another GI testing tool  that outperforms its competitors for many graph classes. They are 

the two programs to compute the automorphism groups and canonical labels of the graphs. It is both written in C 

programming language and have been provided within the same software package with “nauty”. “Traces” starts 

its refinement processes from an initial partition in which, all vertices that have same degree are placed in the 

same cell. Then it chooses a target cell. Unlike “nauty”, Traces prefers large target cells. The logic underlying 

this idea is that larger target cells make less deep search trees (McKay et al.,2014). Traces chooses the first 

largest non-singleton cell as the target cell, which is a subset of the target cell in the parent node. If there is not 

any non-singleton cell, the target cell in the grandparent node is used. “Traces” individualizes the vertices of the 

target cell by one by until obtaining a discrete partition such as other competitive GI tools. 

The advantage of the “Traces” approach is the provided ability to prune the search tree in the maximum extent 

possible, as theoretically proven in study (Kutz et al.,2007). When it comes to the detection of automorphisms 

nauty and Traces have similar strategies, but they differ in search tree generation and target cell selection 

processes as explained in the previous section.. 

 

Difficult Graphs for Isomorphism Problem 

According to the studies, the performances of the best performing isomorphism programs decrease 

exponentially when they are dealing with graphs containing lower numbers of automorphisms, but higher 

degrees of regularity (Greg ,2005 ; McKay et al., 2009).From another studies it was found that the graph 

families listed below are considered as difficult instances for canonical labeling based graph isomorphism 

programs (Presa,2009; Miyazaki,1997; Kocay et al., 1996).These areStrongly Regular Graphs,Miyazaki 

Graphs,Hadamard Matrices, Affine and Projective Planes, Random Regular Graphs. To see a more detailed list 

of different graph types you can refer to the (Tommi et al., 2007).In the last part of our research, we are going to 

represent the experimental results that we have conducted on some of these graphs. Because of this reason we 

have found it beneficial to provide some information about the difficult graph types. 

 

Strongly Regular Graphs  

A strongly regular graph with parameters (n, k, λ, µ) is a regular graph of degree k on n vertices, such 

that each pair of adjacent vertices has λ common neighbors, and each pair of non-adjacent vertices has µ 

common neighbors (Presa et al., 2009). Strongly regular graphs can be categorized into different subgroups as 

explained in study (Tommi et al., 2007). Lattice Graphs, Latin Square Graphs, Triangular Graphs are some 

examples to Strongly Regular Graphs.A Latin Square is an n × n array filled with n different symbols, each 

occurring exactly once in each row and exactly once in each column.The family of Latin Square Graphs is 

generated from Latin squares. A Latin square of order n, n ≥ 2, is an n × n matrix with n different symbols, 

where each symbol occurs once per row and per column in the matrix (Tommi et al., 2007).Lattice Graphs are 

categorized under Latin Square Graphs. Its vertices are the m
2
 elements of a Latin square of order m and there is 

an edge between two vertices if and only if they are in the same row or column (Kundeti et al., 2021). Lattice 

graphs are strongly regular graphs with the parameters of n=m
2 

, λ=m-2 and µ=2 (Ayeh et al., 2009).Triangular 

Graphs are another kind of graphs which are categorized under the group of Strongly Regular Graphs.They are 

vertex transitive and have large automorphism groups (Tommi et al., 2007).In study, Miyazaki constructed 

regular graphs in order to force “nauty” to work in exponential time (Miyazaki et al., 1997). He also proved that 

his constructions were very hard for canonical labeling based isomorphism programs. Miyazaki showed that the 

choice of target cell had a significant effect on the performance of the canonical labeling based isomorphism 

programs. An r-Regular Graph is a graph in which all vertices have the degree of r. A random r-regular graph is 
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selected from the set of all r-regular graphs. An n vertices r-regular graph has the properties where 3<=r<n and 

n*r are even. 

 

IV. EXPERIMENTS AND RESULTS 
Our main objective in this thesis is observing the effects of different target cell selection algorithms on 

difficult graphs for Graph Isomorphism Problem. To achieve that, we conducted several experiments with 

different target cell selection algorithms on “Traces” Graph Isomorphism Package.All the experiments were 

conducted on a 64-bit HP notebook laptop that has 8 GB main memory, 2200 MHz AMD A8 processor and 

Windows 10 as the operating system.As previously mentioned in Section 2.4.3, Traces chooses the first largest 

non-singleton cell as the target cell which is a subset of the target cell in the parent node.In this thesis we 

decided to test different target cell selection algorithms rather than those “Traces” uses by default. These target 

cell selection algorithms were largest target cell selection, smallest target cell selection, max-join target cell 

selection algorithm and max-cell target cell selection algorithm.In the next sections we will demonstrate the 

implementation strategies for these target cell selection algorithms.To do that, first we will talk about the data 

structures of “traces”which we have taken advantage of while implementing the target cell functions. Then, we 

will provide the experimental results we acquired.  

 

Data Structures of Traces 

In “traces”, the vertices of a graph with “n” vertices are numbered from 0 to n-1. To specify the colors 

of the vertices of a partition, two arrays are used. The first array is named as “lab”. The first index of the “lab” 

array starts from index 0 and it holds the vertices in some order. 

For example, if we have a partition with 6 vertices, the “lab” array may look as in the follows: 

 

Table 2  

The "lab" array 

4 2 5 0 1  3 

 

Another important data structure in “traces” is the “ptn” array. The “ptn” array in “traces” used to specify the 

colors. The “ptn” array holds the value of 0 to indicate the ending position of each cell.If ptn[i]=0 for some i, it 

can be said that a cell ends at position i. The other entries of the array may be any other number except 0. For 

instance, assume that the array below is the “ptn” array of a partition whose “lab” array can be seen on Table3. 

Then, by considering the “lab” and “ptn” arrays together, partition can be represented as: {{4}, 

{2},{0,1,5},{3}}. 

 

Table 3  

The "ptn" array 

0  0 1 3 0 0 

 

The other data structures that were used during our target cell selection function implementations were the 

arrays of “d,v and e. For each vertex d[i] hold the degree information of the vertex i. v[i] is an index into array 

“e” such that e[v[i]],e[v[i]+1],. . .,e[v[i]+d[i]-1] are the vertices to which vertex i is joined . The neighbor list 

can exist in array “e” in any order. 

 
Figure 11. A Simple Graph with 4 Vertices 

 

If we consider a simple graph with 3 vertices such as in the figure above, the “d”,”v” and “e”arrays 

look like as in the follows:  

Table 4 
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Simple graph with 3 vertices Array  

d:  1 2 2 1 

v:  0 1 3 5 

e:  1 2 0 3 1 2 

 

As we can see from the arrays above, degree of vertices 0 and 3 are 1, 1 and 2 are 2. Also as it can be 

understood from the “v” and “e arrays, neighbor list The neighbor list of the vertices 0,1,2 and 3 starts at the 

indices 0,1,3 and 5 respectively. The last data structure that we have used in our implementations was the “cls” 

array.The cls[i] is a number which indicates the size of the cell that begins at index i. For example, for the 

partition |2 1 4 | 0 3 | cls[0]= 3 cls[3]=2. 

 

Largest Target Cell Selection Function 

We started our target cell selection function implementations with the largest target cell selection 

algorithm.  

Simply, our target cell function takes an equitable partition and its level in the search tree as inputs and returns 

the selected target cell’s index as output.To implement this target cell selection function, we used two different 

data structures of “Traces” package, which are “cls” and “lab” arrays.Assume that there are 100 vertices in a 

partition and that there are three cells with the sizes of 15, 35 and 50. Assume that the largest cell is the last cell. 

Then, since vertices are numbered starting from 0 in “traces”, returned index must be 49. Other than the cell 

size, we experimented withthe degree of the vertex, which is the first vertex of the target cell. Results showed 

that selecting the largest target cell with a size that is strictly greater than 2 provides slightly better outcomes for 

most of the graph types we tested on. The basic part for of this target cell selector. 

 
Figure 12.  Performance of the largest target cell selector 

 

Smallest Target Cell Selection Function 

The second target cell selection function we implemented is the “smallest target cell selection 

function”. In order to implement this function we used the same data structures as we used for largest target cell 

selector.  

This time we applied two different strategies. The first one was comparing the cell sizes and selecting the 

smallest cell. The second one was size based search. We started to search for cells with size 2. Once found, we 

returned the index number of the first cell. If not found, we searched for cells with size 3 and so on. 

We observed that the first strategy was not working effectively for most of the graphs we tested, while the 

second strategy worked for all the graphs, but its performance was visibly worse than the largest target cell 

selector.  

 

Max-Join Target Cell Selection Function 

Another target cell selection function we implemented is the “max-join target cell selector”. Which 

means selecting the cell with the maximum number of vertices neighboring with other cells.To implement 

“max-join target cell selector”, we benefited Traces’s data structures; “e” and “d” arrays. Depending on the 

individualization refinement method we know two vertices that have different degrees cannot exist in the same 
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cell and the vertices which have same degrees can be in different cells. For instance the figure below, it can be 

observed that vertices 0,1,2 and 3 have the degree of 2, but the vertex 3 belongs to another cell. 

 
Figure 13. A colored graph that has multiple cells for the vertices with same degree. 

 

To be able to distinguish which vertex belongs to which cell we have taken advantage of “d” and 

“e”arrays of the traces. Firstly, we have conducted several experiments with “e” array to be able to understand at 

which index neighbor list of each vertex start. We have noted that the starting index of neighbor lists increase 

regularly according to labelling of vertices. Consider a cell with size of 3. Assume that this cell is not joined to 

any other cell, which means that vertices of the cell are only adjacent to the vertices of the same cell. Then we 

can imagine this graph as the leftmost partition on Figure 19 (dark blue vertices).  If every vertex were only 

neighbors with the vertices within its own cell,then we can expect that the neighbor list of the vertex 0 starts 

from index 0 and at index 4. Neighbor list of vertices 1 starts from index 4 and ends at index 8 and so on. 

Assume that for the same cell, starting index of the neighbor lists of the vertices are 0, 4 ,20. In this case the 

leftmost cell is |0,1,5| , in reality. Considering the individualizing-refinement procedure we have concluded this 

as a sign of a more connected partition and concluded that this cell is possibly adjacent with other cells. The 

partition in Figure 20 can be considered as a possible example to this idea. 

 
Figure 14.  Partition of |0 1 5 | 2 | 3 | 4| 

 

According to our assumption explained above, to implement the max-join target cell selector, firstly we 

have assigned a counter to 1 for each cell, traversed the vertices of each cell one by one and calculated the 

difference between the first indices of neighbor lists for consecutive vertices. Then we have compared the 

difference with the degree of the first vertex. If the degree of the first vertex is not same with the difference, we 

assumed that the cell is joined to another cell (as explained in the above paragraph) and increased the counter by 

1. Finally, we have selected the cell with the maximum counter value and has a size strictly greater than 2.The 

part of the code that expresses the explained strategy is provided below: 
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Figure 15.Performance of the max-join target cell selector 

 

Max-Cell Target Cell Selection Function 

The other target cell function we have implemented in this thesis was max refine target cell selector. 

The aim of this function was finding the cell which leads to maximum number of cells after individualizing each 

vertex of it.To implement this function we have taken advantage of the “cls “and  “ptn” array. Firstly, we have 

created a new partition and copied the “lab” and “ptn” arrays of the current partition into it.Secondly, we have 

individualized each vertex in each cell starting from the first vertex of the cell. To do this we have move the 

individualized vertex to the end of the newly created partition’s “lab” array.  

For example, assume that for the partition |0 1 3 2 4| 6 5| 7 | the initial “lab”” array as as in the follows: 

 

Table 4 

Partition |0 1 3 2 4| 6 5| 7 | the initial “lab”” array 

Lab: 0 1 3 4 2 5 6 7 

 

As we can understand from the partition the cls[0]=5, cls[5]=2 and cls[7] =1. 

After individualization, according to our implementation, the “lab” array of the newly created partition after 

individualization (lab2) should look like as in Table 5. 

When it comes to “ptn” array, keeping in mind the explanation of it in section 5.1, the “ptn” array changes as 

shown in Table 6. 

After arranging the lab and ptn arrays according to our individualization strategy, we have called the refinement 

function which was already implemented in “traces”. Finally, refinement function returns a partition to our 

target cell selection function after performing refinement operation. Then, we have returned the index of the 

target cell which leads to maximum number of cells after individualizing its vertices and has a degree of strictly 

greater than 2. As shown in Figure 16 .  

 

Table 5 

The “lab” array of the newly created partition after individualization 

Lab2: 7 1 3 4 2 6 0 

 

Table 6 

Changed “ptn” Array  

Ptn(intial): 1 1 1 1 0 1 0 0 

Ptn2(after 

individualization): 

1 1 1 0 0 1 0 0 
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Figure 16. Performance of the max-cell target cell selector 

 

V. CONCLUSION 
The experiments we have conducted until now shows that the “largest” target cell selector performs 

better in terms of CPU time for most of the graphs which have an group size greater than 2400. We have also 

observed that for big hadamard graphs which have a group size greater than 19200 the “largest” target cell 

selector leads a smaller number of refinement operations compared with max-join and max-cell target cell 

selectors.Due to our experimental results, it can also be said that, almost for all of the miyazaki graphs that have 

been tested, all of the three target cell selectors showed similar performances but in terms of CPU time the 

“largest” target cell selector performed better than the others due to simplicity of its programming logic. 

We have also observed that especially for bigger latin square and hadamard graphs, max-join target cell 

selector leads to a greater number of refinement operations compared to “max-cell” and “largest” target cell 

selectors.When it comes to max-cell target cell selector, we have observed that for bigger latin square graphs 

which have group size greater than 10800, it leads to less number of refinement operations compared with the 

other target cell selectors. Although it may lead to less number of refinement operations, we have observed that 

in means of CPU time it was the worst performing selector. The reason for this may be the complexity of the 

programming logic of the function. Also, we saw that max-cell target cell selection function leads to reduce the 

search tree depth for most of the graph types. Also, we think that there exist future works to do. First of all we 

have just conducted experiments with three different target cell selectors and in this thesis we did not consider 

the construction ways of the graph types while implementing these target cell selectors. An interesting future 

work may be conducting more experiments with different target cell selectors and then considering both 

experimental results and construction way of the graphs, implementing new target cell selectors for each graph 

type. 
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