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ABSTRACT : This paper presents a fault detection scheme for an artificial intelligence (AI) based-digital twin 

(DT) architecture integrated Long Range (LoRa) onto the wireless 5G networks. The proposed scheme 

combines the capabilities of AI and DT technology to detect anomalies in the network. By deploying LoRa-based 

sensors strategically, real-time spectrum-related data such as signal strength, interference levels, and 

occupancy can be collected. The DT leverages AI techniques, including machine learning (ML) and data 

analytics, to analyze the spectrum data and extract valuable insights. These insights enable the identification of 

interference sources, prediction of spectrum usage patterns, and minimization of the faults. Performance 

evaluations are conducted to assess the accuracy and effectiveness of the proposed scheme in improving 

detection mechanisms and networks performance. The results demonstrate the potential of the AI-based DT 

approach in enhancing the efficiency and reliability of wireless 5G networks with LoRa. 
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I.  INTRODUCTION  

A digital twin (DT) is a virtual representation or a digital replica of a physical object, process, or 

system. It is created by capturing and integrating real-time data from sensors, Internet of Things (IoTs) devices, 

and other sources, along with relevant contextual information [1]. DTs enable real-time monitoring, analysis, 

and simulation of the physical counterpart, providing valuable insights, predictive capabilities, and decision 

support. Future generation wireless networks, such as 5G and beyond, are envisioned to support unprecedented 

levels of connectivity, data rates, and diverse applications [2]. To realize the full potential of these networks, 

intelligent management and optimization approaches are required. In this context, the concept of DT has 

emerged as a promising technology that combines virtual representations and artificial intelligence (AI) 

techniques to enhance the intelligence and efficiency of wireless networks. A DT for intelligence-based future 

generation wireless networks leverages real-time data collection from network devices, sensors, and 

management systems to create a virtual replica of the network [3, 4]. This virtual representation is integrated 

with AI algorithms, including machine learning (ML), deep learning (DL), and reinforcement learning (RL), to 

enable advanced analytics, predictive modeling, and optimization. By analyzing network data and patterns, the 

DT provides insights into network performance, predicts potential issues, and facilitates proactive decision-

making. The DT enhances network planning and optimization by simulating different scenarios and evaluating 

the impact of network parameters. It enables predictive maintenance by detecting anomalies, predicting 

equipment failures, and optimizing maintenance schedules. Spectrum management benefits from DTs by 

dynamically allocating and optimizing frequency bands based on spectrum availability and demand [5-7]. 

Furthermore, DTs contribute to IoT network management, network security, traffic prediction, and virtual 

testing and validation. The integration of DT technology with intelligence-based future generation wireless 

networks opens up new possibilities for optimizing network performance, ensuring reliable connectivity, and 

adapting to dynamic network conditions. It empowers network operators and administrators with valuable 

insights, automated decision support, and efficient resource allocation. However, challenges such as data 

privacy, scalability, and real-time synchronization between the physical network and the DT need to be 

addressed to fully realize the potential of this technology. Finally, the DT concept combined with AI techniques 
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holds great promise for intelligence-based future generation wireless networks [8,9]. By creating a virtual 

replica of the network and leveraging AI algorithms, DTs enable intelligent network management, optimization, 

and decision-making. They contribute to improved network performance, enhanced user experience, and 

efficient utilization of network resources in the evolving landscape of wireless communication [10].  

 In recent studies, several areas and applications of DTs have emerged in the context of wireless 

networks [11, 12]. DTs are utilized for network planning and optimization tasks, such as determining optimal 

base station locations, antenna configurations, and network capacity planning. By simulating different scenarios 

and analyzing the impact of network parameters, DTs assist in optimizing coverage, capacity, and quality of 

service for wireless networks. DTs are employed for predictive maintenance of wireless network infrastructure. 

By analyzing data from network devices, sensors, and historical maintenance records, DTs can detect anomalies, 

predict equipment failures, and recommend proactive maintenance actions. This helps in reducing downtime, 

optimizing maintenance schedules, and improving network reliability. DTs play a role in optimizing spectrum 

utilization and management [13]. They can analyze spectrum availability, interference patterns, and traffic 

demand to dynamically allocate and optimize frequency bands. DTs help in mitigating interference issues, 

improving network performance, and maximizing spectrum efficiency. DTs are applied in managing and 

optimizing the IoT networks. By creating DTs of IoT devices and their connectivity, it becomes possible to 

monitor device behavior, analyze data patterns, and optimize network performance. DTs assist in managing 

device configurations, handling scalability challenges, and ensuring reliable connectivity for IoT applications 

[14]. DTs contribute to enhancing network security in wireless networks. By creating digital replicas of network 

infrastructure and applying AI algorithms, DTs can monitor network traffic, detect anomalies, and identify 

potential security threats. DTs aid in real-time threat detection, incident response, and network security 

management [15].  

 In summary, while several studies have explored DT frameworks, AI techniques, and wireless network 

optimization, limited research has specifically addressed the integration of DT, AI, LoRa protocol, and spectrum 

sensing management in the context of wireless 5G networks. Errors related to LoRa node identification, 

transmission, and reception are decreased via effective spectrum management. The proposed DT framework 

presented in this study bridges this gap, providing a foundation for leveraging AI-driven DTs to minimize the 

faults. 

 In the proposed study related to the fault detection in DT wireless 5G network based on LoRa, several 

key activities and contributions have been made. These include: 

 Design and Development of the DT Architecture: The study involves designing and developing a 

comprehensive DT architecture specifically tailored for wireless 5G networks with LoRa spectrum 

sensing management. The architecture encompasses components such as data collection, pre-

processing, storage, AI and analytics, visualization, and control/optimization, as discussed earlier. 

 Integration of LoRa Spectrum Sensing: The study focuses on integrating LoRa spectrum sensing 

capabilities within the DT framework. This involved deploying LoRa-based sensors strategically to 

monitor and gather spectrum-related data, including signal strength, interference levels, and occupancy 

in different frequency bands. The collected data is fed into the DT for analysis and decision-making. 

 AI-Driven Spectrum Analysis: The proposed study leverages AI techniques within the DT to analyze 

the spectrum data collected through LoRa sensors. ML algorithms and data analytics methods were 

employed to detect patterns, identify interference sources, predict spectrum usage, and optimize 

spectrum allocation and management in the 5G network. 

 Optimization and Decision-Making: Based on the insights derived from the AI-driven spectrum 

analysis, the DT facilitated optimization and decision-making processes. It provides recommendations 

for spectrum allocation, dynamic channel selection, interference mitigation strategies, and resource 

optimization in real-time or near real-time. This enabled efficient utilization of the available spectrum 

resources in the wireless 5G network.  

 Performance Evaluation and Validation: The study involves conducting performance evaluations and 

validation of the proposed DT wireless 5G network. This included assessing the accuracy and fault 

detection, evaluating the performance of AI algorithms for measuring the impact of the proposed 

strategies on network performance and resource utilization. 
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Overall, the study aimed to demonstrate the feasibility and theoretical infrastructure of utilizing a DT 

architecture combined with LoRa spectrum sensing for intelligent management of wireless 5G networks. The 

integration of AI-driven analytics and optimization techniques within the DT framework enables proactive 

decision-making, efficient spectrum management, and improved performance in 5G networks with LoRa 

spectrum sensing. The rest of the paper is organized as follows. Section 2 presents the related work, and Section 

3 presents materials and methods with wireless 5G network and LoRa standard. Then, the proposed DT 

framework is described. Section 4 puts forward the experimental analysis and evaluates the performance results. 

Section 5 discusses the the presented study and gives the future aspects of the DT area. Finally, Section 6 

presents the conclusion remarks. 

 

II. RELATED WORKS 
According to Rasheed et al. (2019), DTs are adaptive models of complex systems [16]. DTs are 

becoming a more realistic possibility thanks to recent advancements in computing pipelines, multiphysics 

solvers, AI, big data cybernetics, data processing, and management tools. In a variety of applications, DTs are 

currently a significant rising trend. Also known as synchronized virtual prototypes, device shadows, mirroring 

systems, avatars, and computing gigantic models. In order to encourage the modularization of interdisciplinary 

systems and overcome basic hurdles, DTs play a transformative role not just in how we design and manage 

cyber-physical intelligent systems. Alexopoulo et al. (2020) emphasized that by creating a suitable training data 

set and automatically labeling it using a simulation tool chain, the DT's model can be leveraged to speed up the 

ML training phase while minimizing human involvement [17]. These artificial datasets can be expanded and 

cross-validated utilizing a large amount of real-world data with little to no use. In order to actualize the 

multidisciplinary integration of information and communication technology (ICT) in crisis informatics and 

disaster response, Fan et al. (2021) researched and offered a vision of a catastrophe city DTs idea [18]. To 

improve situation assessment, decision-making, and coordination among various stakeholders and hence 

increase insight into the dynamics of complex disaster response and humanitarian assistance, AI algorithms and 

approaches must be incorporated. Yurkevich et al. (2021) proposed a neural model created for digital air traffic 

control [19]. The components of this technique are connected to wireless 4G and 5G networks, and it embraces 

the idea of a physical self-organizing social network of a distributed organization and technical system. This 

method has the advantage of a sophisticated integration with hybrid AI and a very promising analysis and 

management principle. Li et al. (2021) went into great length on the traits, the most cutting-edge makeup, and 

the corresponding constraints of the future DTs in the aerospace industry [20]. They presented the aero DTs in 

three dimensions. The community conducting research and development on aviation DTs may benefit from 

these, which include interaction, standardization, and cognitive. They assisted in quadrupling the effectiveness 

of current and upcoming aeronautical systems and related procedures. Bécue et al. (2020) proposed novel 

cognitive modeling and cooperative simulation environment [21]. To assess the human behavior models and 

security testing skills in aerospace, they introduced holistic DTs and AI technologies. Finally, they showed how 

to use holistic DTs and AI technologies to deliver new services for optimizing and recovering future factories. 

Grigoropoulos, et al. (2020) provided an analog environment and support for DTs for a platform that makes it 

easier to manage and run drone-based applications on a standard drone architecture [22]. The platform and the 

functions of the apps running on it can first be thoroughly tested in the simulation environment before being 

deployed to the real world. When apps are deployed, the DT is used to identify gaps and expected behaviors 

between them. When the simulation test is run or no errors have been detected, this information can be used as 

an error indicator. Xiong, et al. (2020) investigated a DT-driven aviation engine predictive maintenance 

framework and found an implicit DT Implicit DTs (IDT) model to enhance the effectiveness of engine 

predictive maintenance [23]. The validity of the model is assessed by comparing virtual and real data assets. By 

combining the data-driven DL method with the Long Short-Term Memory (LSTM) model and using an 

illustration of an aviation engine, the approach's utility is shown. Angin et al. (2020) suggested AgriLoRa, a 

low-cost farmland DT system, for intelligent agriculture [24]. In order to identify plant illnesses, weed clusters, 

and nutritional deficits in plants, AgriLoRa uses a wireless sensor network (WSN) installed in agricultural areas 

in conjunction with cloud servers that run computer vision algorithms. In a study [25], Dangana et al. (2022) 

investigated the behavior of Narrow Band (NB)-IoT wireless communication in an indoor industrial setting. A 

situation in the industrial sector was modelled and simulated using Wireless Insite software. Their study looked 
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at how this situation or environment affects the physical layer of the NB-IoT's communication characteristics. In 

this context, signal-to-noise ratios (SNRs) in the environment, throughput levels among terminals as well as 

between terminals and transceiver towers, the power received at signal destination locations, and distances 

between terminals and transceivers are taken into account. Gao et al. (2023) studied the time delay of bridge DT 

services in relation to communication and computation complexity, exposing the different influence of their 

order [26]. They proposed an AIoT-informed DT communication architecture. To reduce communication 

complexity in the framework, the information hierarchy and two-way communication can be used. A Petri net is 

used to illustrate how the proposed framework's data flow and robustness. Additionally, the framework is cross-

platform integrated into a generic DT and tested with various situations. The findings show that, in comparison 

to other bridge DTs now in use, the proposed framework has high efficiency, low latency, and superior fault 

tolerance, which can improve the effectiveness and safety of bridge O&M, particularly in situations where 

communication is limited.  

III. MATERIALS AND METHODS 

3.1. Wireless 5G Networks and LoRa Standard 

Wireless 5G network refers to the fifth generation of wireless network technology, which is designed to 

provide faster data transmission, lower latency, higher capacity, and more reliable connectivity compared to 

previous generations. It is an advanced wireless network technology that aims to meet the increasing demands of 

modern applications, such as IoTs, virtual reality (VR), augmented reality (AR), and high-definition video 

streaming [27, 28].  

 The wireless 5G network consists of 5G base stations that transmit and receive data to and from user 

devices. These base stations are equipped with advanced antenna technologies to provide high-speed wireless 

connectivity. The user devices, such as smartphones or IoT devices, communicate with the base stations 

wirelessly, allowing users to access various applications and services with improved performance [29]. The 

wireless 5G network utilizes higher frequency bands, advanced modulation techniques, and beamforming to 

enable faster data transmission rates and lower latency. It also employs advanced network management 

techniques, such as network slicing, to allocate network resources efficiently and provide customized services to 

different types of applications and users. Overall, the wireless 5G network offers enhanced connectivity and 

enables a wide range of innovative applications and services that require high-speed, low-latency, and reliable 

wireless communication [30]. 

   LoRa, short for Long Range, is a low-power, wide-area networking (LPWAN) technology designed 

for long-range wireless communication. It operates in unlicensed frequency bands, typically using sub-GHz 

frequencies, and is known for its ability to provide long-range connectivity while consuming minimal power 

[31]. 

   In the proposed DT wireless 5G network spectrum sensing scheme, LoRa is utilized for specific 

reasons: 

 Long Range Sensing: LoRa's long-range capabilities make it suitable for spectrum sensing in wireless 

networks, including 5G. By deploying LoRa-based devices as sensors, the DT can gather spectrum-

related data across a wide area, providing comprehensive information for spectrum management and 

optimization. 

 Low Power Consumption: The low-power nature of LoRa devices allows for prolonged sensing 

operations without draining excessive energy. This is essential for continuous spectrum monitoring and 

ensures the sustainability of the proposed DT scheme. 

 Chirp Spread Spectrum (CSS): LoRa utilizes CSS modulation, which spreads the signal over a wide 

frequency range. This modulation technique allows LoRa devices to achieve long-range 

communication and high resistance to noise and interference. 

 Adaptive Data Rate (ADR): LoRa-based LPWANs employ data rate techniques to optimize the data 

rate and power consumption based on the signal strength and distance between devices. This operation 

dynamically adjusts the communication parameters to maintain an optimal balance between range, data 

rate, and energy efficiency. 
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 Robustness and Penetration: LoRa exhibits excellent robustness against interference and can penetrate 

through obstacles such as walls and buildings, ensuring reliable connectivity even in challenging 

environments. 

 Wide Coverage: LoRa's ability to cover large areas facilitates spectrum sensing in a distributed manner. 

By deploying LoRa-based sensors strategically, the DT can monitor the spectrum usage across a wide 

range, capturing variations and patterns in different locations. 

 By integrating LoRa-based LPWANs into the DT architecture for wireless 5G network spectrum 

sensing, the scheme can leverage LoRa's long-range communication, low power consumption, and wide 

coverage to collect spectrum data efficiently and accurately [32, 33]. This data can then be utilized for spectrum 

management, optimization, and decision-making within the DT system, ultimately enhancing the performance 

and efficiency of wireless 5G networks. LoRa operates in the unlicensed spectrum and provides long-range 

communication with low power consumption. On the other hand, 5G is a cellular network technology that 

operates in licensed spectrum bands, offering high-speed connectivity and supporting various use cases beyond 

IoT. As such, there isn't a direct combination of 5G and LoRa in terms of protocol integration. However, it is 

possible to consider scenarios where a hybrid network architecture combines the capabilities of both 

technologies to address diverse connectivity requirements. In such cases, 5G can be used for high-speed data 

transmission and LoRa can be utilized for low-power, long-range IoT communication. The 5G base station 

provides high-speed connectivity to 5G user devices, enabling applications that require fast data transmission, 

such as video streaming or real-time communication. The 5G network operates in licensed spectrum bands and 

supports advanced features like network slicing and low latency. On the other hand, the LoRa gateway connects 

to LoRa devices, which are typically low-power IoT sensors or devices [34]. It is suitable for IoT applications 

that require long battery life and connectivity in remote areas. In a hybrid scenario, the 5G and LoRa networks 

can be interconnected to provide seamless connectivity for different use cases. In the proposed framework, the 

5G network was used for high-speed data transfer and control of IoT devices, while LoRa was utilized for low-

power, wide-area networks applications that require long-range connectivity.  

 

3.2. Proposed Framework 

           In this section, the DT architecture for 5G wireless network management with LoRa communication 

protocol, is explained along with the relationships between its components: 

a) Data Collection Layer: The Data Collection Layer is responsible for gathering real-time data from 

various sources within the 5G network, including base stations, user devices, sensors, and LoRa 

gateways. This data includes network performance metrics, signal strength, device statuses, 

environmental conditions, and LoRa-specific parameters such as SNR and packet error rate (PER). 

b) Data Ingestion and Pre-processing: The collected data from the Data Collection Layer is ingested into 

the DT platform and undergoes pre-processing. This stage involves data cleaning, normalization, 

filtering, and transformation to ensure the quality and consistency of the data. For LoRa-specific data, 

additional pre-processing steps may include decoding LoRaWAN messages and extracting relevant 

information. 

c) Data Storage and Management: The pre-processed data is stored in a suitable database or data 

management system. This allows for efficient storage, retrieval, and query operations on both historical 

and real-time network data. The stored data includes 5G network parameters, LoRa-specific metrics, 

device information, and environmental data. 

d) Integration of 5G Network Data: The DT incorporates data from the 5G network, including information 

from 5G base stations, user devices, and network management systems. This data provides insights into 

network performance, user experience, and resource utilization within the 5G network. 

e) Integration of LoRa Network Data: The DT integrates data from the LoRa network, which includes 

information from LoRa gateways, LoRa devices, and IoT sensors. This data enables monitoring of IoT 

device connectivity, sensor data collection, and overall performance of the LoRa network. 

f) AI and Analytics Layer: The AI and Analytics Layer consists of various AI techniques such as ML, 

DL, and statistical analysis algorithms. These algorithms analyze the collected data to extract insights, 

detect patterns, and predict network behavior. The AI models are trained using historical data to 

provide accurate predictions and optimizations for 5G network management with LoRa. 

             In the AI and Analytics layer of the wireless network's DT, a Convolutional Neural Network (CNN) can 

play a significant role in analyzing and processing the collected data. CNN is a DL algorithm specifically 
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designed for making it well-suited for various applications in the wireless network domain. Here is further 

information in the AI and Analytics layer of the DT: 

 Anomaly Detection: CNNs were used to detect anomalies or unusual patterns in network data in this 

study. By training on normal network behavior, CNNs can learn to identify deviations from the 

expected patterns, such as network intrusions, security breaches, or performance anomalies. This aids 

in early detection and mitigation of potential network issues. A mathematical model was designed for 

fault detection using AI-based wireless network (see Section 3.2.2). 

 Network Modeling and Simulation: The Network Modeling and Simulation component creates a 

virtual replica or model of the 5G wireless network with integrated LoRa communication. This model 

captures the network topology, connectivity, device configurations, and the impact of LoRa 

parameters. Simulation techniques were employed to simulate different scenarios and evaluate the 

performance of the network under various conditions. 

 Control and Optimization: The Control and Optimization component takes inputs from the AI models, 

simulation results, and user interactions to drive intelligent decision-making and optimization actions. 

It enables automated or semi-automated control and optimization of network parameters, device 

configurations, LoRa gateway placement, and LoRa channel allocation to improve the overall 

performance, capacity, and reliability of the 5G network with LoRa. 

           Overall, the CNN-based AI and Analytics layer empowers the DT to extract valuable insights, make 

informed decisions, and optimize network operations in wireless networks. By leveraging the capabilities of DL, 

CNNs enable intelligent analysis of complex data, leading to improved network performance, enhanced 

security, and better user experience. Fig. 1 represented the proposed framework. 

 
Fig.1. The proposed framework: AI-CNN based DT framework for wireless 5G networks 

            In the proposed model, 4 convolution and max pooling layers are used based on the 1D-CNN structure. 

These layers are combined in the dense layer after the flatten layer and transferred to the output layer. Filters of 

32, 64, 128 and 256 are considered, respectively. An AI-based (CNN) system of 5G and LoRa network has been 

established. As seen in Fig. 1, the digital mirror block consists of model, shadow and flow mirroring. The 

physical (real) and digital (virtual) data in the 5G network obtained using the DT are compared and forwarding 

to the CNN layer for training. 80% of the total data is set for training and the rest for testing. In the output layer, 

the expected and predicted values of the data are analyzed. The relationships between these components involve 

the flow of data and information. The Data Collection Layer feeds real-time data to the Data Ingestion and Pre-

processing stage, which then delivers the pre-processed data to the Data Storage and Management component. 

The AI and Analytics Layer utilizes the stored data for analysis and generates insights, which are then visualized 

and presented through the Visualization and User Interface component. The Control and Optimization 

component takes inputs from AI models, simulation results, and user interactions to drive network optimization 

actions, thus completing the feedback loop. In this way, the proposed DT architecture for 5G wireless network 

management with LoRa communication protocol enables efficient monitoring, analysis, and optimization of 

network performance, device configurations, and LoRa-specific parameters. It leverages AI techniques, 

simulation capabilities, and user-friendly interfaces to enhance decision-making and improve the overall 

management of 5G networks incorporating LoRa technology. By integrating the 5G and LoRa networks within 
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the DT framework, network operators can have a holistic view of their wireless infrastructure. They can 

optimize resource allocation, identify potential issues, and make data-driven decisions for network management 

and optimization in a hybrid environment. 

              The mathematical model of a DT for wireless 5G network involves various components and their 

relationships. Here is the proposed mathematical representation of the DT model: 

a) Network Topology: Consider        as the network topology, where   is the set of network nodes 

(LoRa devices) and   is the set of links connecting these nodes. Each node       is associated with 

its coordinates (  ,    ) in the network. 

b) Signal Propagation Model: The signal propagation model determines the path loss and interference 

between nodes. Define   (     ) as the path loss between nodes    and   , which depends on factors 

such as distance, antenna characteristics, and environmental conditions. The interference level between 

nodes    and    is denoted as           

c) Spectrum Sensing: Spectrum sensing measures the occupancy and availability of the spectrum bands. 

Consider         as the occupancy status of spectrum band   at node   , where         = 1 indicates 

the band is occupied, and        = 0 represents an available band. 

d) Resource Allocation: Resource allocation involves assigning spectrum bands, transmit power, and 

other network resources to optimize network performance. Represent  (    ) as the allocated resources 

for node    on spectrum band  . This includes the allocated transmit power, bandwidth, modulation 

scheme, and coding rate. 

e) Performance Metrics: Various performance metrics can be considered, such as throughput, latency, 

energy efficiency, and coverage. Let       denote the achieved throughput at node   , and       

represent the latency experienced by node   . 

f) Optimization Objective: The objective of the DT model is to optimize network performance based on 

specific criteria. Let        be the objective function representing the optimization goal, which can be 

formulated as a minimization or maximization problem. 

g) Constraints: There may be various constraints in the DT model, such as maximum transmit power 

limits, interference thresholds, and quality of service requirements. These constraints can be 

represented as mathematical inequalities or equations. 

              The proposed mathematical model of the DT for a LoRa wireless 5G network incorporates these 

components and their relationships to simulate, analyze, and optimize network operations. It provides a 

mathematical framework to study the interactions between different network elements, predict network 

behavior, and optimize resource allocation to achieve desired network performance. The specific formulation of 

the mathematical model may vary depending on the objectives, constraints, and performance metrics considered 

in a particular DT implementation. 

The proposed mathematical modeling of a DT for fault detection in a wireless network typically 

involves capturing the relationship between the sensor measurements and the occurrence of faults or anomalies. 

The proposed mathematical model for fault detection in a wireless network, is presented as: 

a) LoRa sensor node measurements: The sensor measurements are considered as            
 where    

represents the number of LoRa nodes in the network. These measurements are related to the physical 

volt amounts ranging from -3 to 3 of the LoRa sensor nodes, which are considered homogeneous and 

of the same type in the network. In fact, although there are many different types of nodes in IoT 5G 

networks and the physical variable environment data these nodes detect, the battery voltage values of 

low power consuming nodes are taken as the basis in this study. The obtained data in the network is 

passed through a pre-processing operation such as filtering before being trained. 

b) Fault Detection Model: The specific form of the proposed fault detection model depends on the three-

step approach.  

 Training and Validation: The fault detection model requires training and validation using historical 

sensor data. This involves collecting a dataset that includes both normal operating conditions and 

known fault instances. The dataset is used to train the model to distinguish between normal and 

faulty situations. The model is then validated on unseen data to assess its performance. 

 Decision Threshold: In threshold-based approaches, a decision threshold is defined to determine 

when a fault is detected. The threshold   was set to the system for wireless network application. 

 Alarm Generation: When a fault is detected, an alarm can be generated to notify the network 

administrator or appropriate personnel. The alarm can be in the form of a notification, message, or 

any other mechanism that indicates the presence of a fault. 
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            The fault detection model captures the relationship between the sensor measurements and the fault 

detection variable. This can be done by comparing the measured values with expected or predicted values. The 

goal is to detect faults or anomalies in the sensor measurements. This has been performed by the proposed 

algorithm. 

          The absence or presence of an end user in the network sensing area is determined by the two hypotheses 

   and   . Eq (1) gives the signal    that the LoRa node   recevied signal by the DT user. 

                                                                           {
                                  

                           
                                                          (1) 

           where    is the signal that the digital end user   perceives,    is the transmitted signal by a real end user  , 

   is the channel amplitude gain, and    is the additive white gaussian noise (AWGN). According to the    

hypothesis, there is no end user and the received signal sample    is made up entirely of noise. Contrarily, the 

noise and the signal broadcast after the    channel are likewise present in the signal received according to the    

hypothesis. Examining the signal acquired during the fault detection technique is necessary to select between 

binary hypotheses [34,35]. The presence of digital end user and its signal can only be determined by measuring 

the power considered in the frequency band and comparing it to a number of thresholds. The test static    for 

signal/data detection of the LoRa node, which ascertains whether the end user is active or not, is defined in Eq. 

(2). 

                                                                                
 

   
∑ |               |

    
                                                  (2) 

           where    is defined for the fault detection variable in terms of            measurements,    is the 

number of LoRa node signal samples. The tests are expressed as in Eqs. (3) and (4) with the test static    for 

both of the hypotheses    and   , respectively [31,36]. 

                                                                                        |       
  

  
 

   
)                                                           (3) 

                                                                               |       
    

  
   

    
   

   
                                                 (4) 

          where   is gaussian distribution,   
  and   

  denote to the variances of the forwarded data signal and 

AWGN, respectively. If      |    and      |   , Eqs. (5) and (6) are satisfied, and the probability of  

detection    and the false alarm (fault signal)    are presented by Eqs. (5) and (6). 

                                                                                        
    

      

  
       

√  

                                                              (5) 

                                                                                          
    

 

  
 

√  

                                                                    (6) 

         where   represents the SNR of the end user’s signal measured,     defines the gaussian function, and   is 

the threshold value. Finaly, fault detection function    is presented in Eq.(7). 

                                                                                                                                                                  (7) 

         where    is defined for the fault detection, which indicates the presence (  = 1) or absence (   = 0) of a 

fault, as given in Eq.(8). Here,   is the operator that creates the output of the decision (classifier) between    

and   , performed by the proposed CNN model. 

                                                                      {
         
         

      (8) 

           By incorporating this mathematical model into the DT framework, the DT continuously monitors the 

sensor measurements, apply the fault detection model, and generate alerts when anomalies or faults are detected. 
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This enables proactive fault management and improves the overall reliability and performance of the DT based 

wireless network.  

           Using the RMSE, MAPE, MAE, and coefficient of determination (R
2
) metrics [31,36], the proposed 

approach has been assessed and verified in this study. 

            Root mean square error, sometimes referred to as the quadratic mean of expected and actual value 

discrepancies, is abbreviated as RMSE. The RMSE calculates the model's average residual magnitude, or the 

difference between predicted and actual values. Better performance is indicated by a lower RMSE since it shows 

less prediction errors and a closer match between the predicted and actual values. The RMSE is calculated using 

Eq. (9). The RMSE number decreases in direct proportion to the degree of data prediction accuracy. Therefore, 

if high performance of the suggested models is needed, the RMSE values must be decreased. 

                 √
∑    

 
   

    
   

 
                                                                  (9) 

             where   is the number of samples,    and   
  are the predicted and expected value at sample  , 

respectively.  

             Mean Absolute Error (MAE) measures the average absolute difference between the predicted and actual 

values. Like RMSE, a lower MAE indicates better performance, as it represents smaller prediction errors and 

closer agreement between the predicted and actual values. MAE avoids the problem of estimating mistakes 

damping one another in both the positive and negative directions. In Eq (10), the MAE computation is given.      
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              Mean Absolute Percentage Error (MAPE) measures the average percentage difference between the 

predicted and actual values, expressed as a percentage. A lower MAPE indicates better performance, as it 

represents smaller percentage errors and closer agreement between the predicted and actual values. A formula 

for calculating the MAPE is provided by Eq. (11). 
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R
2
 is called as coefficient of determination. The R

2
 measures the proportion of the variance in the 

dependent variable that is explained by the independent variables in the regression model. R
2
 ranges between 0 

and 1, with a higher value indicating better performance. A higher R
2
 suggests that a larger proportion of the 

variance in the dependent variable can be predicted by the independent variables in the model. The R
2 

is 

calculated as given by Eq. (12). 
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IV. EXPERIMENTAL ANALYSIS 
The application and outcomes of the experiment are presented in this section, and fault detection for 5G 

network in the designed DT framework. The computer language Matlab has been utilized to carry out the 

investigation. In the study, different numbers of LoRa nodes used for DT and real environment have been 

considered. According to the proposed AI-CNN based DT framework for wireless 5G networks, the different 

number of    nodes ranging from 100 to 400 are deployed to different locations in the network, and they notice 

the DT channel in the wireless network. In this application, a very low noise SDR and a 915 MHz monopole 

antenna are used. It contains the SDR receiver's background noise that was utilized to record the signal. This 

eliminates the disparity that was caused by rectifying the AWGN on the obtained I/Q samples. Table 1 shows 

the LoRa parameters used in a Matlab application as in [31] and [36]. 

Table 1. The Simulation Parameters of the LoRa Standard 

Parameters Value 

Frequency band 915 Mhz 

Transmission power 6 dBi 
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Reception sensitivity -146 dBm 

SDR sample rate 20 Mhz 

Number of  nodes (  ) 100 to 400 

LoRa node measured noise number 6 dB 

SDR average noise -121 dBm 

LoRa node average noise -117 dBm 

Distance >15 km 

 

In this study, the correlation between estimated voltage data values (ranges from -3 to 3) of the LoRa 

nodes are compared based on different models and the observed data with a perfect reliable line. In this way, a 

useful approach is performed to assess the fault detection performance and reliability of the models. The 

predicted and observed data in scattered points for different AI methods such as SVM [37], ANN [38], LSTM 

[39], and proposed method are presented. In terms of the performance metrics RMSE, MAPE, MAE, and R
2
, the 

AI methods are compared with each other. 

a) SVM (Support Vector Machines) [37]: SVM is a popular supervised learning algorithm used for both 

classification and regression tasks. It constructs a hyperplane or set of hyperplanes in a high-

dimensional space to separate different classes or predict continuous values. SVM aims to maximize 

the margin between the decision boundary and the training data points. It can handle linear and non-

linear data through the use of different kernel functions such as linear, polynomial, radial basis function 

(RBF), and sigmoid. 

b) ANN (Artificial Neural Network) [38]: ANN is a class of ML models inspired by the structure and 

function of biological neural networks. It consists of interconnected artificial neurons or nodes 

organized in layers. ANN models can be feedforward, recurrent, or a combination of both. They learn 

from data through a process called backpropagation, where the model adjusts the weights and biases 

between nodes to minimize the difference between predicted and actual outputs. ANN can handle a 

wide range of tasks, including classification, regression, and pattern recognition.  

c) LSTM (Long Short-Term Memory) [39]: LSTM is a type of recurrent neural network (RNN) designed 

to overcome the vanishing gradient problem and capture long-term dependencies in sequential data. It 

introduces memory cells and specialized gates that allow information to be stored, updated, and 

retrieved over long sequences. LSTM is particularly effective in tasks that require modeling sequential 

patterns, such as natural language processing, speech recognition, and time series analysis. 

To carried out performance analysis, the following issues are addressed. 

 Data Preparation: First the observed data values are obtained for a specific region and time period. The 

estimated data values are collected from different models for the same region and time period, it is 

ensured that the observed and estimated data values are appropriately matched in terms of temporal 

resolution and spatial coverage. 

 Calculation the Correlation Coefficients: Then, the correlation coefficient is calculated between the 

observed data values and the estimated data values from each model. The correlation coefficient 

measures the linear relationship between two variables and ranges from -1 to 1. A positive correlation 

indicates a direct relationship, while a negative correlation indicates an inverse relationship. The closer 

the correlation coefficient is to 1 (or -1), the stronger the linear relationship. This step is repeated for 

each model to obtain correlation coefficients for each model-observed data pair. 

 Generation of Scatter Plots: Scatter plots are created for each model, with the x-axis representing the 

observed data values and the y-axis representing the estimated data values from that particular model. 

Here, a diagonal line is included with a slope of 1 (Y=X) on the scatter plots, which represents the 

perfect reliable relationship between the observed and estimated data values. 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 2. Predicted and expected data results for SVM with: (a) 400 nodes, (b) 300 nodes, (c) 200 nodes, and (d) 

100 nodes 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3. Predicted and expected data results for ANN with: (a) 400 nodes, (b) 300 nodes, (c) 200 nodes, and (d) 

100 nodes 

By following these steps, it is compared the estimated data values from different models with the 

observed data and assess their correlation and agreement. Figs. 2 to 5 show the predicted and observed data in 

scattered points for SVM, ANN, LSTM, and proposed method, respectively. It has been understood from the 

results that the best performances are obtained for all LoRa nodes. 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 4. Predicted and expected data results for LSTM with: (a) 400 nodes, (b) 300 nodes, (c) 200 nodes, and (d) 

100 nodes 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 5. Predicted and expected data results for proposed method with: (a) 400 nodes, (b) 300 nodes, (c) 200 

nodes, and (d) 100 nodes 

The performances of the SVM, ANN, LSTM, and the proposed method are compared in terms of 

RMSE, MAE, R
2
, and MAPE for different numbers of nodes: 
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For SVM; the SVM algorithm's RMSE values increase as the number of nodes increases, ranging from 

21.41 to 31.48. The highest RMSE is obtained with 400 nodes. The SVM algorithm's MAE values also increase 

with the number of nodes, ranging from 19.72 to 27.91. The highest MAE is obtained with 400 nodes. Similarly, 

the SVM algorithm's MAPE values increase from 17.33% to 24.37% as the number of nodes increases. The 

highest MAPE is observed with 400 nodes. The R
2
 values decrease with the number of nodes, ranging from 

0.8172 to 0.7276. The lowest R
2
 is obtained with 400 nodes. 

For ANN; the ANN algorithm's RMSE values also increase as the number of nodes increases, ranging 

from 20.18 to 28.56. The highest RMSE is obtained with 400 nodes. The ANN algorithm's MAE values increase 

with the number of nodes, ranging from 18.35 to 25.41. The highest MAE is obtained with 400 nodes. The ANN 

algorithm's MAPE values range from 15.98% to 21.63%, increasing with the number of nodes. The highest 

MAPE is observed with 400 nodes. The R
2 

values decrease with the number of nodes, ranging from 0.8384 to 

0.7714. The lowest R
2
 is obtained with 400 nodes. 

For LSTM; the LSTM algorithm's RMSE values increase as the number of nodes increases, ranging 

from 18.25 to 25.88. The highest RMSE is obtained with 400 nodes. The LSTM algorithm's MAE values 

increase with the number of nodes, ranging from 16.54 to 23.72. The highest MAE is obtained with 400 nodes. 

The LSTM algorithm's MAPE values range from 13.18% to 19.40%, increasing with the number of nodes. The 

highest MAPE is observed with 400 nodes. The R
2
 values decrease with the number of nodes, ranging from 

0.8646 to 0.8013. The lowest R
2
 is obtained with 400 nodes. 

For proposed method; the proposed method consistently achieves the lowest RMSE values across all 

numbers of nodes, ranging from 15.67 to 21.76. The lowest RMSE is obtained with 100 nodes. The proposed 

method also consistently achieves the lowest MAE values, ranging from 13.38 to 20.55. The lowest MAE is 

obtained with 100 nodes. The proposed method's MAPE values range from 10.29% to 17.29%, consistently 

being the lowest among all algorithms and numbers of nodes. The lowest MAPE is observed with 100 nodes. 

The R
2 
values consistently remain higher for the proposed method, ranging from 0.8849 to 0.8114. The highest 

R
2
 is obtained with 100 nodes. 

Based on these results, the proposed method consistently outperforms SVM, ANN, and LSTM across 

all metrics (RMSE, MAE, MAPE, and R
2
) and for all numbers of nodes. It achieves lower error values (RMSE, 

MAE, MAPE) and higher R
2
 values, indicating better predictive performance and a better fit to the data. The 

reasons for the superior performance of the proposed method can be attributed to several factors. The proposed 

CNNs are specifically designed for voltage sequence data analysis. They excel at capturing spatial and temporal 

patterns, making them well-suited for time series forecasting tasks. The proposed method might have better 

feature extraction capabilities, allowing it to capture and represent more relevant information from the input 

data. This ability enables the model to make more accurate predictions. The CNN architecture used in the 

proposed method is better optimized for the specific characteristics of the dataset, resulting in improved 

performance compared to SVM, ANN, and LSTM. The training process and optimization techniques used in the 

proposed method is more effective in finding optimal model parameters and reducing prediction errors. 

Table 2 reports the detailed performance results of SVM, ANN, LSTM, and the proposed method 

based on the provided data. 

In this study, it has been also evaluated the false alarm rate (FAR) versus signal-to-noise ratio (SNR) in 

the context of a proposed scheme. These two concepts need to be explained briefly so that it is possible to make 

a correct and healthy performance analysis. 

 False Alarm Rate (FAR): The FAR refers to the probability of incorrectly detecting a signal or event 

when there is no actual signal present. In other words, it measures how often the system mistakenly 

identifies noise or interference as a valid signal. 

 Signal-to-Noise Ratio (SNR): SNR is a measure of the strength or quality of the signal compared to the 

background noise. It quantifies the ratio of the power of the signal to the power of the noise. Higher 

SNR values indicate a stronger, more distinguishable signal relative to the noise. 

From Fig. 6, it has been inferenced that the relationship between FAR and SNR is typically an inverse 

one. As the SNR increases, the quality of the signal improves, making it easier to distinguish the signal from the 

background noise. Although the highest FAR is when the SNR is -15, the lowest FAR value is observed when 

the SNR increases towards -5. Consequently, the FAR tends to decrease as the SNR increases. Also, the 

expected and observed FAR values are very similar. To put it another way, the data acquired via the DT is 

extremely close to the real data and the margin of error is at the minimum level. Moreover, it is understood that 

the data estimated by the DT has a high accuracy rate. 
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                           Table 2. The performance comparison of the methods  

 

Methods 

 

Error Metrics 

Number of LoRa nodes in the network  

100 200 300 400 

SVM [37] 

RMSE 21.41 23.96 27.61 31.48 

MAE 19.72 20.34 24.49 27.91 

MAPE 17.33 18.61 21.58 24.37 

R
2
 0.8172 0.7943 0.7539 0.7276 

ANN [38] 

RMSE 20.18 21.64 24.96 28.56 

MAE 18.35 20.99 22.84 25.41 

MAPE 15.98 17.94 18.25 21.63 

R
2
 0.8384 0.8247 0.8018 0.7714 

LSTM [39] 

RMSE 18.25 20.49 22.19 25.88 

MAE 16.54 18.62 20.55 23.72 

MAPE 13.18 15.63 16.78 19.40 

R
2
 0.8646 0.8466 0.8260 0.8013 

Proposed 

method 

RMSE 15.67 17.83 19.68 21.76 

MAE 13.38 16.35 18.46 20.55 

MAPE 10.29 13.67 15.37 17.29 

R
2
 0.8849 0.8594 0.8337 0.8114 

 
Fig. 6. False alarm rate (FAR) versus SNR with the proposed method 

V. CONCLUSION  
In this paper, a DT framework based on AI for wireless 5G networks with LoRa protocol which 

presents a promising approach is proposed to detect the faults in the network. By integrating AI techniques 

within the DT architecture, the framework enables efficient data collection, analysis, and decision-making 

processes. The use of LoRa protocol for spectrum sensing adds an additional layer of flexibility and scalability 

to the framework. Through the deployment of LoRa-based sensors, real-time spectrum-related data can be 

gathered, facilitating accurate fault detection. The AI algorithms applied within the DT framework allow for the 

identification of interference sources, prediction of spectrum usage patterns, and the strategies, which reduce 

faults or sensor disorders in the wireless network. This results in improved network performance, and better 

fault detection in wireless 5G networks. The proposed DT framework offers a foundation for future research and 

development in the field, opening doors for practical implementation and real-world deployments of AI-driven 

DT solutions for wireless 5G networks. 
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