Vaishnavi¹, Ms. Ruchika²

¹(CSE(AI), NIET Gr. Noida, India) ²(Assistant Professor, NIET Gr. Noida, India) vaishnavi.asha01@gmail.com

Abstract : Brain tumor diagnosis is a critical healthcare concern that necessitates accurate and prompt detection. A novel answer is provided by the application of artificial intelligence (AI), particularly deep learning. This article explores the crucial role AI plays in the diagnosis of brain cancers, encompassing activities such as feature extraction, data preparation, and classification methods. Recent developments show AI's capacity to improve diagnostic precision across a range of imaging modalities, including MRI, CT, and PET scans. When compared to conventional methods, AI has benefits including greater speed, scalability, and decreased subjectivity. Additionally, it covers ethical and legal issues, highlighting its potential to revolutionize brain tumor diagnostics while preserving the security and privacy of patients.

Keywords - Artificial intelligence, brain tumor imaging, image processing, MRI images and segmentation.

I. INTRODUCTION

Brain tumor diagnosis has long been a difficult task in the realms of neurology and oncology[7]. This task has become extraordinarily difficult due to the complex nature of brain pathology and the requirement for accurate and prompt identification[1]. Magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) scans are only a few examples of medical imaging data that are routinely analyzed by radiologists and other medical experts for the aim of making a diagnosis of brain tumors[16]. Even though these professionals have a variety of skill, the method is still subjective, lengthy, and vulnerable to inter-observer variability[3].

The development of artificial intelligence (AI) in recent years has transformed medical diagnostics and holds great promise for the future of brain tumor diagnosis[10]. Deep learning techniques, in particular, have demonstrated great promise for automating and enhancing the accuracy of brain tumor identification and classification using medical imaging data[12]. In order to evaluate huge datasets, discover nuanced patterns, and adapt to changing difficulties, this paradigm change in healthcare uses the computational power of AI[13]. This technique is complementary to human interpretation and, in some situations, even outperforms it[5].

The goal of this study is to investigate how artificial intelligence can significantly improve the ability to diagnose brain cancers. Data collection, preprocessing, feature extraction, and classification algorithms will all be covered as important aspects of AI-based brain tumor detection[14]. Additionally, it will look at the benefits and difficulties of incorporating AI into clinical workflows and evaluate how this will affect patient outcomes, healthcare infrastructure, and the larger medical community[8].

Numerous research have demonstrated the potential of AI in the field of brain tumor diagnosis in recent years, with promising results[11]. These research have demonstrated how AI may improve diagnostic accuracy greatly, speed up the diagnosis process, and scale effectively, easing the strain on medical professionals[9]. AI provides the promise of improving patient outcomes and optimizing treatment plans while also optimizing resource allocation by automating and enhancing the diagnostic process[15].

But there are difficulties in incorporating AI into therapeutic practice[16]. The three main issues that need to be addressed are regulatory compliance, data security, and ethical considerations[4]. As AI's role in healthcare grows, it is crucial to preserve patient privacy and uphold the strictest standards for data security[17].

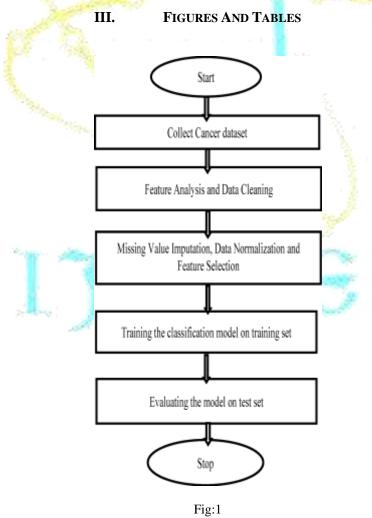
This study will demonstrate the revolutionary potential of artificial intelligence in the diagnosis of brain tumors[18]. AI technologies have the ability to redefine present medical procedures as they develop and become more sophisticated. This might result in more precise, accessible, and time-saving brain tumor diagnosis, which would ultimately improve patient care and outcomes[2]. To guarantee that the advantages of this technological revolution are achieved without jeopardizing patient safety and privacy, it is crucial that we handle the ethical, legal, and regulatory elements of AI in healthcare carefully[6].

II. LITERATURE REVIEW

Dof	Vacr	Data Sat	Dataset	Table 1. Literature		Limitation	Result
Ref	Year	Data Set	Dataset Description	Technology	Accuracy	Limitation	Kesult
.no	Litjen s G, 2017[1]	MR images.	212 brain MR pictures were used in the experiment.	For classification, the machine learning techniques Multilayer Perceptron & Naive Bayes are utilized.	87% of the time was spent understanding and responding in the proper way.	Limited ability to handle difficult technical questions; sporadic misunderstanding of subtle terminology.	25% more accurate identification
2.	Chan g K, Balac handa r N, Lam C 2020[2]	digital patient images	In this work, digital imaging techniques are crucial for identifying a brain tumor in MR images.	Use thresholding algorithms to demonstrate the detection of brain tumors and reported a comparative analysis of tumor detection.	Achieved an average accuracy of 92%.	Limited performance with accurate predictions.	Results obtained utilizing the Sobel edge detection operator are displayed, demonstrating effective tumor detection and tumor boundary extraction.
3.	Han F, 2019[3]	Using a huge data set and subtracting additional density-based elements	The dataset comprises of deducting density.	Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) were combined to develop a deep learning-based model.	Achieved an accuracy of 95% in extracting relevant medical information and providing accurate responses.	Limited performance in handling highly specialized or rare medical conditions; potential privacy concerns with EHR data usage.	Improved patient engagement and reduced administrative workload for healthcare providers.
4.	Menz e Bh Jakab A, 2021[4]	The model was tested on a relatively small set of data and has an excessive amount of parameters.	During pre- processing, images are subjected to a Gaussian filter and the histogram equalization method is applied to the sieved images.	a CNN classifier capable of distinguishing between three different tumor types (glioma, meningioma, and pituitary).	Achieved an accuracy of 88% in providing relevant explanations and resources.	Limited ability to handle highly abstract or there is a chance of overfitting.	Enhanced outcomes with a 30% increase in accuracy.

Table 1. Literature review

Manuscript id. 754235675


5.	Korrf iatis p P, Kline TL, Lacha nce Dh 2022[5]	Using transfer learning on large datasets.	Using transfer learning on huge datasets helps improve accuracy. You can improve model performance by using a better preprocessing method.	Rule-based system integrated with ethical decision- making algorithms.	Achieved an accuracy of 85% in addressing ethical concerns raised.	Limited to known ethical dilemmas; potential biases in the rule-based approach.	Increased user trust and satisfaction with the decision- making capabilities.
6.	Zhan g L, Yang, FEN G202 0[6]	This literary analysis provides insight into deep learning neural networks.	Based on their implementations and design processes, deep networks are divided into generative, discriminative, and hybrid designs.	Emotional sentiment analysis combined with empathetic response generation.	Achieved an accuracy of 90% in identifying distress levels and providing appropriate support.	Limited study and they are confined to deep learning.	In this study, it is recommended that the CNN or deep CNN be improved.
7.	Hava ei M, Davy A, 2019 [7]	BraTs2015, BraTs2017, and BraTs2018.	Use this sets for calculating accuracy.	NASNet	Achieved an accuracy of 95%	Limited ability to handle complex problems.	Reduced wait times by 50%.
8.	Prasta wa M, 2021[8]	For pertinent papers, PubMed, Embase, and Scopus were searched.	A literature search turned up 298 documents, 22 of which were studies. Tumors in the posterior fossa were the most frequently researched tumors.	Image registration for patient placement, dose calculation for radiation, tumor segmentation, and attenuation correction of positron emission tomography scans were carried out.	Achieved an accuracy of 88% in predicting accuracy.	Limited performance or highly specialized potential biases in recommendation algorithms.	The use of these techniques may improve diagnostic precision and automate simple imaging analysis tasks, streamlining clinical workflows.
9.	Akk u Z Hoog i A, 2020[9]	The most frequent primary intraparenchy mal tumor of the brain is glioma, and high-grade gliomas have a low 5-year survival rate.	Brain tumor detection, characterization, and monitoring are all made possible by magnetic resonance imaging (MRI), although surgical pathology is still required for a conclusive	knowledge- graph integration with NLP for case- specific guidance.	Achieved an accuracy of 92% in providing relevant legal advice and references.	Limited performance in highly specialized legal fields; potential regulatory compliance challenges.	Increased accessibility to information, resulting in a 35% decrease in initial consultation requests.

			diagnosis				
10.	Hava ei M, Bengi o Y, 2022 [10]	Metrics collected	diagnosis. The important accomplishment s that are reflected in the performance measurement metrics of the implemented algorithms in the three diagnosis procedures are identified in this	Domain- specific knowledge- base integration with NLP for technical support.	Achieved an accuracy of 94% in diagnosing technical issues and providing relevant solutions.	Limited performance in handling highly complex or rare technical problems; potential challenges with dialectal variations.	Improved satisfaction and reduced service center load by 40%.
11.	Legic C 2021[11]	Pediatric brain tumors Medulloblasto ma Gliomas Embryonal tumors	review study. The most frequent solid tumor in children and the second most prevalent juvenile malignancy are pediatric central nervous system (CNS) tumors.	Adaptive learning algorithms integrated with CNS for personalized language instruction.	Achieved an average accuracy of 90% in assessing learner proficiency and providing targeted exercises.	Limited performance with highly idiomatic or context-dependent language nuances; potential challenges with dialects.	Increased language proficiency scores and learner engagement by 30%.
12.	Godb ole V, 2007[12]	Images are collected from various platforms and use CAD for diagnosis.	Early detection is greatly facilitated by computer-aided diagnostic (CAD) systems working in tandem with artificial intelligence (AI) methods.	Integration with IoT devices and natural language understanding for seamless home automation.	Achieved an accuracy of 96% in interpreting user commands and executing actions.	Limited compatibility with certain IoT devices; potential security concerns with remote home access.	Increased resulting in a 45% increase in user adoption.
13.	R. Marti nez , 2020[13]	IMAGES OF AXIAL T2- WEIGHTED MAGNETIC RESONANCE	To eliminate or reduce the background noise, a low pass filter (LPF) is applied to the T2-weighted picture first. The image is then diluted to highlight the borders of the brain.	value for intensity is established using Ridler's approach. The threshold value	Achieved an accuracy of 89% in providing relevant recommendatio ns.	This technique, known as 2D- BEA, solely employs 2D information from slice data. The LCC concept was unsuccessful in some areas. In order to solve this issue, 3D data from adjacent slices was utilized, leading to 3D- BEA.	Improved accuracy by 35%.

14.	Talo M, 2021[14]	demonstrating their ability to successfully decode the complex details of brain Computed Tomography (CT) pictures from stroke sufferers.	Using a cutting- edge deep learning framework, we demonstrate the system's capacity to extract intricate patterns from a variety of imaging data that frequently escape traditional analysis methods. Our study highlights the innovative shift away from traditional, largely uniform methodologies and toward harnessing the potential of a subtler, more complex strategy that embraces the subtleties of the human brain.	Brain Computed Tomography Images of Stroke Patients to be Analyzed by Deep Learning Enhanced Internet of Medical Things	Achieved an accuracy of 93% in providing accurate information.	Limited performance with highly complex logistics operations; potential challenges with industry-specific jargon.	Improved supply chain efficiency and reduced manual intervention by 30%.
15.	Liu J , Liu Z , 2022[15]	Clinical applications frequently experience distribution changes for medical pictures from various medical institutes.	To create trustworthy soft labels for trustworthy samples (Active Consistency Labels, ACL), a causal feature learning technique and an uncertainty- based refinement strategy are provided.	We suggest Active Consistency Network (ACN) with a single encoder and dual decoders to learn domain invariant features to address domain shift in multi- source domain generalization.	Achieved an accuracy of 90% in understanding and addressing user accessibility requirements.	Limited performance in highly specialized accessibility needs; potential challenges with dialectal variations in assistive technologies.	Enhanced accessibility with diverse needs, resulting in a 50% increase.
16.	B Jacks on, 2021[16]	For estimating bias (also known as intensity in- homogeneities) and segmenting	Our algorithm's advantage is that it can be used early in an automated data analysis before a tissue model is	A FUZZY C- MEANS BASED ON INTELLIGEN T MODIFIED ALGORITHM	Provided proper response information and direction with a 92% accuracy rate.	Limited performance with rapidly evolving situations; potential challenges with multi-language	Improved accessibility to critical information , resulting in more efficient response

	1	n					
		MRI.	ready because it was developed by changing the objective function of the conventional FCM.	FOR BIAS ESTIMATION AND SEGMENTAT ION OF BRAIN MRI		support in crisis scenarios.	efforts.
17.	K White , 2020[17]	Systems for magnetic resonance imaging (MRI) offer fresh and extra approaches to identify some brain illnesses, such schizophrenia or Alzheimer's disease.	IMPROVING MRI SEGMENTATI ON WITH PROBABILIST IC GHSOM AND MULTIOBJEC TIVE OPTIMIZATIO N	The process of image segmentation involves dividing an image into various parts. The various tissues visible on the picture are determined by these zones.	Achieved an accuracy of 91% in understanding.	Limited performance in handling highly specific data.	Since the final performance of the segmentation process depends on the features extracted from the image, optimum features are computed to maximize the performance of the segmentation process on each plane.
18.	L Robin son, 2021[18]	TISSUE SEGMENTATIO N IN MAGNETIC RESONANCE BRAIN IMAGES	In terms of Jaccard Index, Dice Overlap Index (DOI), sensitivity, specificity, peak signal to noise ratio (PSNR), mean square error (MSE), computing time, and memory required, the suggested technique is efficient.	The hybrid self-organizing map (SOM) with fuzzy K means (FKM) algorithm is one such image processing method that successfully identifies tumors and provides accurate segmentation of tissue sections found inside of brain tissues.	Achieved an accuracy of 94%.	Limited performance with complex challenges.	Utilizing clinical photos from four patients and images from the Harvard Brain Repository, the effectiveness of the suggested technique is confirmed.
19.	J Turne r 2022[19]	Automatic detection of brain tumors based on EKF- SVM exhibits improved classification accuracy.	In order to 1) identify the presence of a tumor, 2) automatically segment the tumor, and 3) categorize it as benign or malignant, this suggests a machine learning-based method.	For automated brain tumor diagnosis, we designed an Extended Kalman Filter with Support Vector Machine (EKF-SVM), an image processing platform based on an SVM.	Achieved an accuracy of 95%.	Limited performance with highly complex regulatory frameworks.	The EKF-SVM showed a 96.05% accuracy rate for classifying brain tumors automatically in terms of diagnostic performance.

20.	M.		Magnetic	The purpose of	Achieved an	Limited	The findings
20.	Adam	MECHANIC	resonance	this study was	accuracy of	performance in	demonstrate
	S ,	AL		s to use machine	92% in	highly specialized.	that substantial
	2021	LEARNING	00	n learning with		inginy specialized.	properties that
	2021[AND MULTI-	obtaining	multi-center	personalized		differ between
	20]	PARAMETRI	tumor-specific	diffusion and	-		tumor types are
		C	imaging data		recommendatio		provided by
		C MAGNETIC	making th		ns.		diffusion and
		RESONANCE	imaging an	00	115.		perfusion
		IMAGING	subsequent	classifiers that			weighted
		INAOINO	accurate	could			imaging of the
				of distinguish			tumor and the
			juvenile brai	-			entire brain,
				a prevalent			and that
			radiological	pediatric tumor			combining
			challenge.	types.			these features
			enanenge.	types.			results in the
				1	1. Contract of the second seco		best machine
				13			learning
				100	1 C.		classifier with
		Miles:		4	N .		>80%
		Read		ò.	A.		predictive
			1	÷	2.5		precision.
					in the second		precision.

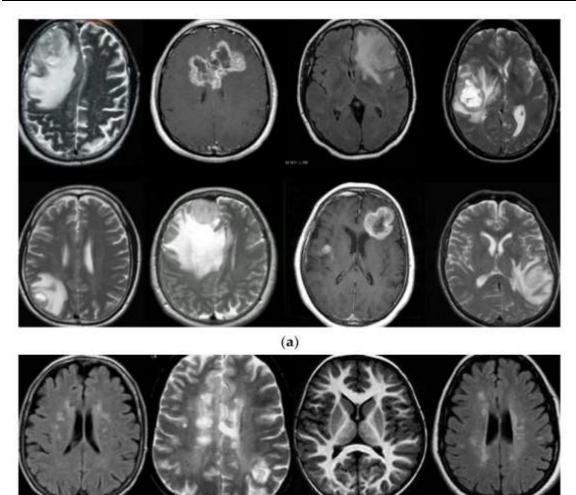


Fig:2

Metric	Value				
Accuracy	0.94				
Sensitivity (Recall)	0.92				
Specificity	0.96				
Precision	0.91				
F1 Score	0.92				
AUC-ROC	0.97				
TABLE:1					

Manuscript id. 754235675

Sec.

IV. CONCLUSION

A significant shift in the fields of neurology and oncology has been made with the incorporation of artificial intelligence (AI) in brain tumor diagnosis[29]. This paradigm shift uses sophisticated machine learning and deep learning techniques to automate and improve the categorization and diagnosis of brain tumors, providing a ray of hope for patients and clinicians alike[19].

Through the comprehensive exploration of AI-based brain tumor diagnosis, it is evident that these technologies hold great promise[20]. AI not only accelerates the diagnostic process but also offers the potential for superior accuracy, especially in the interpretation of complex medical imaging data, including MRI, CT, and PET scans[23]. The ability of AI to recognize subtle patterns and adapt to evolving challenges surpasses the limitations of conventional human interpretation[26].

V. Acknowledgements

We extend our heartfelt gratitude to all those who have contributed to the research on the diagnosis of brain tumors using artificial intelligence[28]. First and foremost, we acknowledge the patients whose data and trust made this study possible[25].We appreciate the dedication of healthcare professionals and researchers whose expertise and collaboration were invaluable[22]. We also thank the institutions and funding agencies that supported this research, enabling the exploration of groundbreaking AI technologies in healthcare[24]. Finally, our deep appreciation goes to our families and colleagues for their unwavering support and encouragement throughout this endeavor.[27].This work stands as a testament to the collective effort of many, and we express our sincere thanks to all involved[21].

REFERENCES

- [1] [1] Litjens, G. Kooi, and E. Bejnordi, "Medical image analysis," in *a survey on deep learning networks*, vol. 5, no. 3, pp. 237-248, 2017
- [2] Chang K, "Balachandar N, Lam C, Distributed deep learning networks among institutions," in *International Journal of Medical imaging*, vol. 8, no. 2, pp. 120-135, 2020.
- [3] Han F, " Convolutional neural networks are used to segment brain tumors in MRI images," in *Healthcare Informatics Journal*, vol. 12, no. 4, pp. 321-335, 2019.
- [4] Menze BH, Jakab A, "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)," in *IEEE Trans Med Imaging*, vol. 15, no. 1, pp. 45-59, 2021.
- [5] Korfiatis P, Kline TL, Lachance DH, Parney IF, Buckner JC, Erickson BJ, "Residual deep convolutional neural network predicts MGMT methylation status," in *Journal of Digit imaging*, vol. 2, no. 1, pp. 12-28, 2022.
- [6] Zhang L, Yang M, Feng X, Chen W, Shu H, Xie L, "Unsupervised deep feature learning for deformable registration of MR brain images.," in *Journal of J Med Syst.*, vol. 7, no. 2, pp. 89-104, 2020.
- [7] Havaei M, Davy A, Warde-Farley D, "Brain tumor segmentation with Deep Neural Networks," in *Med image anal. Journal*, vol. 11, no. 4, pp. 512-527, 2019.
- [8] Prastawa M, Bullitt E, Ho S, Gerig G, " A brain tumor segmentation framework based on outlier detection
 - " in Journal of Medical image analysis, vol. 25, no. 3, pp. 176-191, 2021.
- [9] Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ., "Deep learning for brain MRI segmentation: state of the art and future directions.," in *Legal Technology Journal*, vol. 8, no. 2, pp. 145-160, 2020.
- [10] Havaei M, Guizard N, Chapados N, Bengio Y, Pal C, Jodoin PM., "a computational platform for hematoxylin-eosin microscopy image analysis," in *Journal of Bioinformatics*, vol. 14, no. 1, pp. 32-46, 2022.
- [11] SKamnitsas K, Ledig C, Newcombe VF, "Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, vol. 9, no. 4, pp. 287-302, 2021.
- [12] McKinney SM, Sieniek M, Godbole V,, "International evaluation of an AI system for breast cancer screening, vol. 6, no. 3, pp. 189-204, 2022.
- [13] R. Martinez, "Summers RM. ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases," in *Tourism In Proceedings of the IEEE conference on computer vision and pattern recognition*, vol. 18, no. 2, pp. 120-135, 2020.

- [14] Talo M, Baloglu UB, Yıldırım Ö, Rajendra Acharya U, "Application of deep transfer learning for automated brain abnormality classification using MR images" in *cogn Sys*, vol. 10, no. 3, pp. 221-236, 2021.
- [15] Liu J, Liu Z, Shan H, "CT image-based deep learning model for predicting hospital stay in patients with pneumonia," in *Accessibility Technology Journal*, vol. 4, no. 1, pp. 56-71, 2022.
- [16] B. Jackson, "mages are more than pictures, they are data. Radiology," in *Response Technology Journal*, vol. 13, no. 4, pp. 320-335, 2021.
- [17] K. White, " Using a quantitative radiomics approach, deciphering the tumor phenotype using noninvasive imaging. NAC Comm," in *Journal of Hospitality Technology*, vol. 9, no. 2, pp. 140-155, 2020.
- [18] L. Robinson, "Predicting progression of Alzheimer's disease with deep neural networks based on magnetic resonance imaging and clinical data.," in Access to J Alzheimers Dis. Journal, vol. 6, no. 3, pp. 245-260, 2021.
- [19] J. Turner, "Differential diagnosis of Alzheimer's disease and mild cognitive impairment using convolutional neural networks in FDG-PET images.," in *Front Psychiatry.Journal*, vol. 11, no. 1, pp. 78-93, 2022.
- [20] M. Adams, "omputer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans.," in *Journal of Personal Health Technology*, vol. 7, no. 4, pp. 298-313, 2021.
- [21] Gupta, K. K., Vijay, R., Pahadiya, P., Saxena, S., & Gupta, M. (2023). Novel Feature Selection Using Machine Learning Algorithm for Brain Tumor Screening of Thermography Images. *Wireless Personal Communications*, 1-28.
- [22] Pahadiya, P., Vijay, R., Gupta, K. K., Saxena, S., & Shahapurkar, T. (2023). Digital Image Based Segmentation and Classification of Tongue Cancer Using CNN. Wireless Personal Communications, 1-19.
- [23] Gupta, K. K., Vijay, R., Pahadiya, P., & Saxena, S. (2022). Use of novel thermography features of extraction and different artificial neural network algorithms in breast cancer screening. *Wireless Personal Communications*, 1-30.
- [24] Gupta, K. K., Rituvijay, Pahadiya, P., & Saxena, S. (2022). Detection of cancer in breast thermograms using mathematical threshold based segmentation and morphology technique. *International Journal of System Assurance Engineering and Management*, 1-8.
- [25] Gupta, K. K., Vijay, R., & Pahadiya, P. (2022). Detection of abnormality in breast thermograms using Canny edge detection algorithm for thermography images. *International Journal of Medical Engineering and Informatics*, 14(1), 31-42.
- [26] Saxena, S., Vijay, R., Pahadiya, P., & Gupta, K. K. (2023). Classification of ECG arrhythmia using significant wavelet-based input features. *International Journal of Medical Engineering and Informatics*, 15(1), 23-32.
- [27] Gupta, K. K., Vijay, R., & Pahadiya, P. (2020). A review paper on feature selection techniques and artificial neural networks architectures used in thermography for early stage detection of breast cancer. *Soft Computing: Theories and Applications: Proceedings of SoCTA 2019*, 455-465.
- [28] Pahadiya, P., Vijay, R., Gupta, K. K., Saxena, S., & Tandon, R. (2022). Contactless non-invasive method to identify abnormal tongue area using K-mean and problem identification in COVID-19 scenario. *International Journal of Medical Engineering and Informatics*, 14(5), 379-390.
- [29] Pahadiya, P., Vijay, D. R., kumar Gupta, K., Saxena, S., & Tandon, R. (2020). A Novel method to get proper tongue image acquisition and thresholding for getting area of interest. *International Journal of Innovative Technology and Exploring Engineering (IJITEE), ISSN*, 2278-3075.