
International Journal of Scientific and Technical Research in Engineering (IJSTRE) 

www.ijstre.com Volume 9 Issue 5 ǁ Nov-Dec 2024 

ISSN: 2581-9941 

Manuscript id. 754235714 www.ijstre.com  Page 1 

Applications of Pettis Integrable Sequence of Functions 

Which are Not Birkhoff Integrable 
 

Eshraga Mubark Salih 
1
, Shawgy Hussein

 2
 

1
Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia 

E.SALIH@qu.edu.sa 
2
Department of Math, College of Science, Sudan University of Sciences and Technology, Sudan 

Shawgy2020@gmail.com 

   

 

Abstract: For   be a weakly Lindelöf determined Banach space. We follow José Rodríguez in [20] and with a 

bit of small changes we show (in the same way) that if   is non-separable, then there exist a complete 

probability space          and a bounded Pettis integrable sequence of functions        that is not 

Birkhoff integrable; when the density character of   is greater than or equal to the continuum, then the 

sequence    is defined on       with the Lebesgue measure. Hence, in the particular case         (the 

cardinality of   being greater than or equal to the continuum) the sequence of functions    can be taken as the 

pointwise limit of a uniformly bounded sequence of Birkhoff integrable functions, showing that the Lebesgue's 

dominated convergence theorem for the Birkhoff integral does not hold in general. 
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I. Introduction 

Many rare extensions being widely shown of the theory of Lebesgue integration to the case of functions 

with values in Banach spaces, those due to Bochner [5] and Pettis [13,14,18]. The Birkhoff integral [1] and the 

(generalized) McShane integral [8] lie strictly between the Bochner and Pettis integrals; see [2, 4, 8, 9, 10]. 

It is valid and well known that if the Banach space in the range is separable, then Pettis, Birkhoff and 

McShane integrability coincide; see [15 Corollary 5.11] and [8, Corollary 4C]. The differences arise in the non-

separable case, and the situation becomes more complicated: every Birkhoff integrable function is McShane 

integrable, see [9, Proposition 4], and every McShane integrable function is Pettis integrable, see [8, Theorem 

1Q], but none of the reverse implications hold in general, as shown in [9, Example 8] and [10, Example 3C], 

respectively (more examples can be found in [12], [16] and [4]). However, for certain classes of non-separable 

Banach spaces some equivalences remain valid: Birkhoff and McShane integrability coincide for functions with 

values in spaces with weak* separable dual unit ball (equivalently, spaces that are isometric to subspaces of   ), 

see [9, Theorem 10], and McShane and Pettis integrability coincide for functions defined on       with values in 

      (   any set) or superreflexive spaces; see [4]. 

We give an application on the study of [20] that the differences between Birkhoff and Pettis 

integrability go a bit further in non-separable Banach spaces. We show that for the wide class of weakly 

Lindelöf determined Banach spaces (WLD) there is no hope of obtaining a general result on the equivalence of 

the Pettis and Birkhoff integrals. Theorem 2.1 states that for a non-separable WLD Banach space   there always 

exist a complete probability space         and a bounded Pettis integrable sequence of functions        

that is not Birkhoff integrable. For "bigger" spaces this result can be refined in the following way: for a WLD 

Banach space   with density character greater than or equal to the continuum, there always exists a bounded 

Pettis integrable sequence of functions            that is not Birkhoff integrable (see [20]). 

In addition, if   is a set of cardinality greater than or equal to the continuum, a particular case of the 

constructions in Theorem 2.3 gives a uniformly bounded sequence of Birkhoff integrable functions 

                  that converges pointwise to a function                that is not Birkhoff integrable 

(Theorem 2.5). This means that the analogue of Lebesgue's dominated convergence theorem for the Birkhoff 

integral does not hold in general. This negative feature is not shared by the Bochner, McShane and Pettis 

integrals, for which there are limit theorems that ensure the validity of Lebesgue's theorem; see [5, 8, 10] and 

[14]. 

The main references are [7] and [18]. Here   is the cardinality of the continuum and   stands for the 

Lebesgue measure on the  -algebra   of Lebesgue measurable subsets of      . Setting | | be the cardinality of 

an arbitrary set  . We write    to denote the dual of our real Banach space  .    is the unit ball of  . The 
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density character of  , denoted by         , is the minimal cardinality of a norm dense set in  . A 

Markushevich basis of   is a family {   
     

    }         such that (i)    
   (  

 )       (the Kronecker 

symbol) for every      ; (ii)     ̅̅ ̅̅ ̅̅ {  
 }      and (iii) for each      { } there exists     such that 

   
         . 

Recall that a Banach space   is said to be WLD if     ,      ) is homeomorphic to some subset   of 

a cube        , endowed with the product topology, such that for each     the set {          } is 

countable. The class of WLD Banach spaces contains all weakly compactly generated spaces (see [7] Theorem 

11.16]) and, more generally, all weakly countably determined ones (see [6, Theorem 7.2.7]). In particular, the 

spaces considered in [4] for which Pettis and McShane integrability coincide        and the superreflexive ones) 

are WLD. The existence of Markushevich bases in WLD Banach spaces, [19, Corollary 3.1] (alternatively see 

Theorem 12.50 in [7]), will be an essential tool for the proofs of Theorems 2.1 and 2.3 

 

II. Results 

For         be a complete probability space. The sequence of functions    defined on   with values in 

a Banach space   is Birkhoff integrable (with respect to  ) if, and only if, for every     there is a countable 

partition      of   in   such that 

∥
∥
∥
∥
∥
∑  

   

           
   ∑  

   

        (  
  

)
∥
∥
∥
∥
∥

   

for arbitrary choices   
    

  
   , the series involved being unconditionally convergent, is automatically fulfilled 

if the sequence of    is bounded. We have (see [20])  

 

Theorem 2.1. Let   be a WLD Banach space. If   is non-separable, then there exist a complete probability 

space         and a bounded Pettis integrable sequence of functions        that is not Birkhoff integrable. 

Proof. As pointed out in the introduction, since   is WLD, there exists a Markushevich basis of  , say 

{   
     

    }   . By [17, Corollary], we can also assume that 

   
   

 ∥∥  
 ∥∥  ∥∥   

   ∥∥    

Set   
  ∥∥   

   ∥∥    
  and    

    ∥∥   
   ∥∥

  
    

    for each    . Then {   
     

    }    is a Markushevich 

basis of   such that    
        for every     and        ∥∥  

 ∥∥   . 

 

Since     ̅̅ ̅̅ ̅̅ {  
 }      and   is non-separable,   is uncountable. Set     . Let us consider the  -

algebra   in   made up of all sets     for which   or     is countable, and take the following complete 

probability measure   on       :        if   is countable,        otherwise. Define        by 

        
  for every    . Obviously    is bounded. 

 

On the one hand,    is not Birkhoff integrable. Our proof is by contradiction. Assume that    is Birkhoff 

integrable. Then there is a countable partition      of   in   such that 

∥
∥
∥
∥
∑  

 

           
   ∑  

 

       (  
  

)
∥
∥
∥
∥

 
 

 
                             

 

whenever   
    

  
   . Since   is an atom of  , all the   's but one (say   ) are of  -measure 0 . Inequality (1) 

can now be read as 
 

 
    

      

 ∑‖           ‖

 

     
      

 ∑∥∥  
    

 
∥∥

 

     
      

 ∑   
   (  

    
 )

 

    
      

 (      )
 

 

which contradicts the fact that    has two distinct elements (in fact,    is uncountable). Therefore,    is not 

Birkhoff integrable. 

On the other hand,    is Pettis integrable. To see this fix         . Since   is WLD, the set {  
          

    } is countable, see [7, Proposition 12.51], and therefore         vanishes  -almost everywhere. 

Since          is arbitrary,    is scalarly  -null and, in particular, Pettis integrable. The proof is complete. 

It follows that a WLD Banach space   is separable if, and only if, every (bounded) Pettis integrable 

function defined on a complete probability space with values in   is Birkhoff integrable. Therefore, whereas the 

coincidence of Pettis and Bochner integrability characterizes the finite-dimensional Banach spaces, the 
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coincidence of Pettis and Birkhoff integrability characterizes the separable spaces inside the class of WLD 

Banach spaces. 

The proof of Theorem 2.3 below is inspired by some ideas in the example of a Pettis integrable 

function that is not Birkhoff integrable given in [12]. We first need the result isolated in Lemma 2.2. Observe 

that, since the Borel  -algebra of       has cardinality  , the same also holds for the collection of all countable 

partitions of       by Borel sets, which we enumerate as {          }. Then we have (see [20]) 

 

Lemma 2.2. There exist collections {      }   
 and {      

 }
   

 of countable subsets of       such that 

(i)                  and       
         

    for every     with    ; 

(ii)               
    for every    ; 

(iii)            and       
      for every     and every          with       . 

 

Proof. We proceed by transfinite induction. The first step is easy, since    and   
  can be obtained by choosing 

exactly one point of each member of    of positive  -measure (taking different points for    and   
 , of course). 

Suppose now that     and that we have already constructed two collections {       }   
 and {       

 }
   

 of 

countable subsets of       with the following properties: (1)              and        
    

    for every 

    with         ; (2)           
    for every            ; (3)             and 

       
      for every     and every           with       . 

Observe that         (               
 ) has cardinality | |   , because each                 

  is 

countable and |   |   . Since each uncountable Borel subset of       has cardinality  , see [3, Theorem 

8.3.6], it follows that if          and       , then |   |    and, in particular,     has two distinct 

elements. Therefore,        and       
  can be constructed by choosing exactly one element of     for every 

         of positive  -measure (with different choices for        and       
  ). The proof is finished. 

 

Theorem 2.3. (see [20]) Let   be a WLD Banach space. If           , then there exists a bounded Pettis 

integrable sequence of functions            that is not Birkhoff integrable. 

 

Proof. As in the proof of Theorem 2.1,   admits a Markushevich basis {   
     

    }    such that    
        

for every     and        ∥∥  
 ∥∥   . 

Since      {  
 }      and           , the cardinality of   is greater than or equal to  . Fix two 

injective maps         such that            . Let {      }   
 and {      

 }
   

 be the collections of 

subsets of       obtained in Lemma 2.2 Define            by 

    
   

{
 
 

 
 
  (     )

                  

  (     )
              

     

        ⋃  

   

 (             
 ) 

                             

 

Next we show that the bounded functions    satisfies the required properties. 

 

To see that    is Pettis integrable fix         . We already know that the set {            
    } is 

countable. Since   and   are injective and the        and       
  are countable, the set 

{                  
    } is countable. Since          is arbitrary,    is scalarly  -null and, therefore, 

Pettis integrable. 

To finish the proof we will show that    is not Birkhoff integrable by contradiction. Assume that    is 

Birkhoff integrable. Then there exists a countable partition        of       in   such that 

 

∥
∥
∥
∥
∥
∑  

   

           
   ∑  

   

        (  
  

)
∥
∥
∥
∥
∥

 
 

 
                               

 

for arbitrary choices   
    

  
   . By the inner regularity of   with respect to the Borel  -algebra of      , we 

can suppose without loss of generality that   is made up of Borel sets, that is,          for some    .  

http://www.ijstre.com/


Applications of Pettis Integrable Sequence of Functions Which are Not Birkhoff Integrable 

Manuscript id. 754235714 www.ijstre.com  Page 4 

Since             and       
       whenever        , for each     there are some 

  
    

  
    such that              

     (     )
  and           (  

  
)    (     )

 . It follows that 

∥
∥
∥
∥
∥
∑  

   

          
   ∑  

 

       (  
  

)
∥
∥
∥
∥
∥
  ∥

∥  (     )
    (     )

 
∥
∥

  (  (     )
 )

 

(  (     )
    (     )

 )    

 

 

which contradicts (3) and shows that    is not Birkhoff integrable. The proof is finished. 

 

Observe that the functions    constructed in the proof of Theorem 2.3 is even universally Pettis 

integrable, i.e.,    is Pettis integrable with respect to each Radon measure on      . This follows immediately 

from the boundedness of    and the fact that {                  
    } is countable for every         . 

As a consequence of Theorem 2.3 it turns out that, under the Continuum Hypothesis, a WLD Banach 

space   is separable if, and only if, every (bounded) Pettis integrable functions            are Birkhoff 

integrable. 

 

Corollary 2.4. (see [20]) Let   be a superreflexive Banach space. If           , then there exists a bounded 

McShane integrable sequence of functions            that is not Birkhoff integrable. 

Proof. Since   superreflexive, Pettis and McShane integrability coincide for functions           ; see [4]. 

The result now follows from Theorem 2.3. 

From now on, given a set   {   
     

    }    will denote the standard Markushevich basis of       (i.e. 

  
          for every       and    

              for every          and every     . Now we have the 

following (see [20]). 

 

Theorem 2.5. Let   be a set of cardinality | |   . Then there exists a uniformly bounded sequence 

                  of Birkhoff integrable functions that converges pointwise to a function                

that is not Birkhoff integrable. 

 

Proof. Let                be the function given by (2) associated to the basis {   
     

    }   . The proof of 

Theorem 2.3 reveals that    is not Birkhoff integrable. 

Write        {        
          

   } and       
  {        

  
         

  
  } for every    , and define 

    {        
     }  {        

  
    } and         

     for every    . Define          
 and 

            
     

     for every     (where    denotes the characteristic function of the set  ). Then 

        is a uniformly bounded sequence (since    is bounded) that converges pointwise to   . In order to prove 

that each       is Birkhoff integrable it suffices to check that each    is Birkhoff integrable. To this end fix 

    and    . Choose a finite partition           of       in   such that         for every      . 

Observe that if   
     for every      , then 

∥
∥
∥
∥
∑  

 

   

          
  

∥
∥
∥
∥

 

    
     

         

 

  |  
   |  

 is injective. Since     is arbitrary,    is Birkhoff integrable. It follows that       is Birkhoff 

integrable for every    , and the proof is finished. Observe that the functions       obtained in the proof of 

Theorem 2.5 are even Riemann integrable, i.e., given    , for every     there is a finite family      of non-

overlapping closed intervals covering       such that 

∥
∥
∥
∥
∥
∑  

   

            
   ∑  

   

          (  
  

)
∥
∥
∥
∥
∥

 

   

 

whenever   
    

  
   . For a detailed account of the theory of Riemann integration in Banach spaces see [11]. 

We finish the work by Corollary (2.6) below (already known; see [9, Example 8]). Although this result 

can be deduced in the same way as we did in Corollary 2.4 (recall that Pettis and McShane integrability coincide 

for functions defined on       with values in          ), the particular properties of our constructions allow us to 

provide a direct proof (see [20]). 
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Corollary 2.6. Let   be a set with cardinality | |   . Then there exists a bounded McShane integrable functions 

               that is not Birkhoff integrable. 

 

Proof. We use the terminology of [10]. Let                be the function constructed in the proof of 

Theorem 2.5. We know that    is not Birkhoff integrable. In order to prove that    is McShane integrable fix 

   . For each     the set        (resp.       
 ) is countable, and we can choose an open set        

         (resp.       
        

    ) such that  (      )    (resp.  (      
 )   ). Fix any gauge 

          such that                            (                               
 ) whenever 

          (resp.          
 ) and    . 

Now, if ⟨    
    

     
  ⟩      is a McShane partition of       subordinate to  , we have 

∥
∥
∥
∥
∑  

 

   

    
    

       
  

∥
∥
∥
∥

 

  

∥
∥
∥
∥
∥
∥

∑  

   

  ( ⋃  

  
        

    
    

  )   (     )
  ∑  

   

  ( ⋃  

  
        

 

    
    

  )   (     )
 

∥
∥
∥
∥
∥
∥

 

  

 

 

since    
        

    
    

          and    
        

     
    

         
  for every    . Since     is arbitrary,    is 

McShane integrable, with integral 0, and the proof is complete. 
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