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Abstract: A numerical wavefront solution for quantum  transmission lines with charge discreteness  is 

proposed for the first time. The nonlinearity of the system becomes deeply related to charge discreteness. The 

wavefront velocity is found to depend on the normalized (pseudo) flux variable. Finally we find the dispersion 

relation for the normalized flux
0/   . 

 

I. Introduction 
Currently nanostructures are embedded in countless devices and systems [1-5] . Naturally, at this scale 

and for low temperature, quantum mechanics plays a key role. Lately, much effort has been dedicated to study 

nanostructures, using as model of quantum circuits with charge discreteness [6-12]. In this article, we are 

interested in spatially transmission lines with charge discreteness. In this work we will consider a wavefront 

solution for an extended quantum circuit (transmission line). A sequence of bands and gaps is founded and 

characterized for this specific system with charge discreteness, which can extended for the description of more 

complex extended systems as dual transmission lines.. In section 2 we will introduce a generalization of 

classical transmission line. In section 3 we present the quantum transmission lines with charge discreteness, the 

Hamiltonian for coupled circuits, and the equations of motion for the spatially continuous system. In Sec. 4, the 

wavefront solution is considered. Finally, we give our conclusions. 

  

II. Generalization of classical transmission line 

Consider a homogeneous classical transmission line, assumed infinite, where the every cell is 

constituted of a LC circuit with inductance L and capacitance C. Assume that the interaction between neighbor 

cells is trough the capacitors (direct line), the classical evolution equations for the electrical current and charge, 

become in this case 

m m m 1 m 1

d 1
L I (2q q q )

dt C
          (1) 

Where the integer m designates the cell at position in the chain and, as usual, m m

d
I q

dt
  is the electrical 

current. The above linear equation of evolution becomes directly from the classical Lagrangian  agL given by 

2 2

ag m m m 1

m

L 1
L ( I (q q ) )

2 2C
         (2) 

Using the Lagrange equations one obtains (1). 

From the usual definition for the conjugate variables, in this case the magnetic flux 

ag

m

L
I




         (3) 

And the expression for the Hamiltonian in terms of these variables it becomes 

2 2

m m m 1

m

1 1
H ( (q q ) )

2L 2C
          (4) 

To solve the coupled systems (1) is direct since it corresponds to the second order discrete wave equations, 
2

m m m 1 m 12

d 1
L q ( 2q q q )

dt C
           (5) 

Supporting solutions like a plane wave. Explicitly, 
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m 0q q exp(i t ikm)          (6) 

Where, as usual in these cases , the frequency   and the wavenumber k  become related through the dispersion 

relation.  

The variable 
0q is a constant parameter describing the amplitude of the wave. Note that we have 

considered by sake of simplicity the lattice-size a  as one. That is the adimensional number k in the equation 

(6) is really ka . 

After some algebra, one obtains from (5) the dispersion relation  

2 24 k
sin ( )

LC 2
          (7) 

Here we have: 

a) The infrared limit ( ka 0 ) related to the continous –space structure becomes direct and corresponds 

to the dispersion relation k / LC , namely a non dispersive medium. 

b) Equation (7 ) defines a system with only a band structure 

c) The quantization of this transmission line is direct since it is analogue to the case of mechanical 

vibration of a homogeneous system. The Hamiltonian is 

 †

k k

k

2 k 1
H sin( ) (a a )

2 2LC
         (8) 

With the usual creation-destruction operators of the mode k. 

From a general point of view, for arbitrary composition od a cell in the line, the Hamiltonian of this generalized 
electrical transmission line becomes quadratic, namely, 

m,s m s m,s m s

m,s

1 1 1 1
H ( ( ) ( ) q q )

2 L 2 C
         (9) 

Quantization is carried-out here in the standard way. For homogeneous systems where  

m,s m s

1 1
( ) ( )
L L

         (10) 

And  

m,s m s

1 1
( ) ( )
C C

         (11) 

Is always possible to transform the hamiltonian to normal modes. That is, using the Fourier transform to 

separate variables we have 

k

k

H H          (12) 

corresponding to an ensemble of harmonic oscillators. 

 

III. Quantum transmission lines with charge s discreteness 

As illustration and following [8, 9, 13], and from the Hamiltonian  (4), the usual quantization procedure 

for flux and charge, and the prescription (2) for charge discreteness, we could construct the quantum 

Hamiltonian for the direct line with charge discreteness ( eq ), the Hamiltonian may be written as:  

   
2

2 2e
m m 1m2

m e

2 q 1
H sin (Q Q )

Lq 2 2C







 
    

 





     (13) 

Where the index m  describes the cell (circuit) at position m, containing an inductance L and 

capacitance C. The conjugate operators, charge Q and pseudoflux  ,  satisfy the usual commutation rule  

 
m m' m,m'Q , i   

 
 and     

m s m sQ ,Q , 0      
  

.    (14) 

 

A spatially extended solution of Eq. (1) corresponds to the quantization of the classical electric 

transmission line with discrete charge (i.e. elementary charge eq ). Note that in the formal limit eq 0 the 
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above Hamiltonian gives the well-known dynamics related to the one-band quantum transmission line, similar to 
the phonon case. The system described by Eq. (1) is very cumbersome since the equations of motion for the  

 

operators are highly nonlinear due to charge discreteness. However, this system is invariant under the 

transformation  
k kQ Q  , that is, the total pseudoflux operator  

m   commutes with the 

Hamiltonian; in turn, the use of this symmetry helps us in simplifying the study of this system. To handle the 

above Hamiltonian, we will assume a continuous approximation (infrared limit); that is we use 

m m 1Q Q Q / x    . In this way, it is possible to re-write the sum of Eq. (1) as the integral

m

dx



 

  , 

where x is a dimensionless variable used to denote the position in the chain (i.e. the equivalent of k), since we 

have not introduced so far the cell size of the circuit. In this approximation, the Hamiltonian (13) becomes  

  
2

2 2e
mm 2

e

2 q 1 Q
H H dx ( sin ( ) )dx

Lq 2 2C x


   

 



     (15) 

where  mH  represents the Hamiltonian density operator for the fields. From the above Hamiltonian we find the 

equations of motion (Heisenberg equations) for the field operators:  

 
2

2

1
Q

t C x

 
 

 
        (16) 

 e

e

q
Q sin( )

t Lq


 






         (17) 

Note that, in circuit with discrete charge the electric current (17) is bounded and periodic in the pseudo 

flux. The nonlinearity in the electrical current evolution equation makes the problem very difficult. 

An independent or closed equation for the pseudo flux is easily obtained as 

 

  
2 2

e

2 2

e

1 q
sin( )

t LC q x

   
    

   




      (18) 

 

Here, we consider a cell of size a and the limit where the spatial variations of the dynamic variables is 

longer than a. In this case defining the capacitance C (per unit of length), the inductance L (per unit of length), 

the length x  is x ma , and keeping the limit a 0 . 

 

IV. Wave front solutions 
We proceed in the standard way, by assuming travelling wave solutions for our operators, and the semi 

classical Hamiltonian is: 

  
m

2
2 2e

m2

e

2 q 1 Q
H H dx ( sin ( ) )dx

Lq 2 2C x


   

 



    (19) 

Equation (19) corresponds to an eigenvalue problem for the non-linear super operator sin  

  
m

2
2 2e

m2

e

2 q 1 Q
H H dx ( sin ( ) )dx

Lq 2 2C x


   

 



, 

The equations of motion (Heisenberg equations) are 

x

H H

t Q x Q

   
 

   
,  x

Q
Q

x





,  
Q H

t

 


 
 

Performing the appropriate calculations we obtain 
2

2

1 Q

t C x

 


 
         (20) 

And 

e

e

qQ
sin( )

t Lq


 






        (21) 
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Note that the formal limit 
eq 0 gives us the usual linear wave equation for transmission line in electric 

networks. 
let 

ikxe , 
ikxQ Qe  , 

0

eq
 


      (22) 

Then the wavefront   equations are  
2 2

02

0

1 k
sin( / )

t LC

 
   

 
       (23) 

And  
2 2

02

1 Q k
cos( / )

Q t LC


   


       (24) 

And  dispersión relation is obtained from: 

 
2

2

0

0

sin( / )
k

LC


  


  and  

2
2

0

0

cos( / )
Q k

Q LC
       (25) 

4
4 2

0 2
(1 ( / ) )

( )

k

LC
     

2
2

2 2 1/2

0

1 1

(1 ( / ) )
v

k LC



 
 


 

2

2 1/2

0

1

(1 ( / ) )
v LC

 



       (26) 

which in the limit eq 0 becomes the usual one band transmission wave equation. 

2
2

2

1
v

k LC


   

Equation (26) is plotted for short quantum circuits,here, we show the figure 1, where, 00 / 1    

 
 

Figure 1. Plot of the velocity of the wavefront as a function of the flux parameter. Here, there is a structure of 

bands and gaps 00 / 1   , 
2 0v LC   if 0/ 0.1,0.2,0.3.....   1.0. This structure is a direct 

consequence of charge discreteness, an effect that disappears when eq 0 .  

Figure 2, show s the dispersion relation for 01 /   ,  0/x   .Here the quantum transmission line 

present structure of bands and gaps where real solutions appear when 
2v LC 0 as it is shown in table 1. 
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Figure 2. Plot of the velocity of the wavefront as a function of the flux parameter. 

Here also we have a structure of bands and gaps. 01 /   . When /  >>1, wave velocity goes to zero. 

Table1. 

n x 2v LC  

1 4.4896 <0 

2 7.7245 >0 

3 10.9038 <0 

4 14.0660 >0 

5 17.2206  <0 

6 20.3712  >0 

7 23.5194  <0 

8 26.6660  >0 

9 29.8115  <0 

10 32.9563  >0 

 

Tabla 1  is obtained from equations (25) which can be put as sin / cosx x x and n is a number that appears 

in the approximated solution of sin / cosx x x [14]. 
1x exp(cosh (2n 1) / 4))          (27) 

The numerical results of table 1, may be useful to estimate thermal properties of a quantum LC circuit with 

charge discreteness [15]. 

 

V. Conclusions 
For the quantum electric transmission line with charge discreteness described by the Hamiltonian  (13), 

and equations of motion (16-17), wavefront solution was found. One condition on the velocity generates a band-

gap structure dependent on the pseudo flux parameter (see figure 1), namely, there exist regions (values of 

0/  ) for which a solitary wavefront propagates with constant speed according the value of 0/  . The main 

results of this work are the existence of the band-gap structures for 00 / 1    and for 0/ 1    . 
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