International Journal of Scientific and Technical Research in Engineering (IJSTRE)
www.ijstre.com Volume 5 Issue 5 I Nov-Dec 2020.
ISSN: 2581-9941

Coordinated batch processing for multi-stage MapReduce
of huge session data using GPGPU

Ruo Ando!

!(Center for Cybersecurity Research and Development, National Institute of Informatics, Japan)

ABSTRACT: The Science Information Network (SINET) is a Japanese academic backbone network for more
than 800 universi-ties and research institutions. We propose a method of coordinated patch processing for
coping with large scale session data using MapReduce framework. Besides, we introduce a multi-stage Reduce
processing using GPU clusters to accelerate the processing of our pipeline. In proposal system, design patterns
of pairwise reduction for GPU and merge scatter reduction for CPU are applied for processing huge session
data effectively. Then, Splunk time-series indexer provides the operational insight for handling security incident
response of security operation team in SINET. In experiment, we have measured CPU utilization in processing
large scale session log file. It has been turned out that proposal system is robust to the size of session data
ranging from 97GB to 400 GB in the point of CPU idle time. We can conclude proposal system can provide
stable resource utilization regardless of the size of huge session data.

KEYWORDS - Batch Processing, MapReduce, GPGPU, CUDA Thrust, Intel TBB

l. INTRODUCTION

1.1 SINET

The Science Information Network (SINET) is a Japanese academic backbone network for more than
800 universities and research institutions. It connects many research facilities in such fields as seismology, space
science, high-energy physics, nuclear fusion, computing science, and so on. It is now being used by over 2
million users and supports international research collaboration through international lines. On March 2019,
National Institute of Informatics (NII) builds the world's first round-the-globe ultra-high-speed 100 Gbps
academic communications network. Since 2016, NIl have been running a service of NII-SOCS (NIl Security
Operation Collaboration Ser-vices). Our team of NII-SOCS have deployed security monitoring system consists
of PA-7080, Elasticsearch, Splunk and NVidia Multi-GPU server. In this talk, we introduce our system and
some operational experience of handling huge session data ranging from 400,000,000 to 800,000,000 per day.
During four years of 2016-2019, We have faced many challenges in terms of number of hosts, protocol
profiliferation, probe placement technologies and security incident response.

In this paper, we propose a coordinated batch processing for multi-stage MapReduce to cope with huge
session data on SINET. MapReduce [3] is an algorithmic framework, like divide and conquer or backtracking.
MapReduce has been getting a lot of promise as an algorithmic framework which can be executed concurrently.
In this paper, we illustrate the design for large scale MapReduce with different levels of parallelism.

1.2 PaloAto 7080 and session data format

The PA-7000 Series is powered by a scalable architecture for the purpose of applying the appropriate
type and volume of processing power to the key functional tasks of networking, security, and management.
Session data format is shown in Table 1. No.1 - 9 is concerned about TCP/IP packet header. NO 19-23 is
retrieved to generate statistics. Particularly, No.12 (application) and No.17 (category) is inspected in detailed.
Firewall such as PaloAlto-7080 plays an essential role in network security. Also, as cyber attacks become
sophisticated, the language to achieve the efficiency and flexibility is required for complex intrusion detection
tasks.

Manuscript id. 754235539 www.ijstre.com Page 39

http://www.ijstre.com/

Coordinated batch processing for multi-stage MapReduce of huge session data using GPGPU

Table 1 Palo Alto session data format

No item name Value

1 | capture time 2018/01/01 00:00:00.000

2 | generated time 2018/01/01 00:00:00.000

3 | start time 2018/01/01 00:00:00.000

4 | elapsed time 3

5 | source IP XXX XXX XXX XXX

6 | source Port 64354

7 | source country code JP

8 | destination IP YYYY.YYYY.VYY.YYYY

9 | destination Port 2939
10 | destination country code | US
11 | protocol Tcp
12 | application NA
13 | subtype NA
14 | action NA
15 | session end reason NA
16 | repeat count 0
17 | category NA
18 | packets 0
19 | packets sent 0
20 | packets received 0
21 | bytes 0
22 | bytes sent 0
23 | bytes received 0
24 | device name NA

1. OVERVIEW

Batch processing usually divided into two phases: (1) duplicating and producing multiple different
outputs and (2) fetching multiple outputs back together. Second phase is designed for generating some sort of
aggregate output. These two phases are called as coordinated batch processing as shown in Figure 1. One of the
main purposes to adopt coordinated batch processing is implementing MapReduce pattern. Broadly, map phase
is for sharding a work queue. Then, reduce phase is for interoperating processing which eventually reduces
many outputs down to a single aggregate response. In reduce phase, there could be a large number of different
aggregate patterns for normal batch processing. Therefore, we need to extend normal batch processing to
alternative version such as coordinated batch processing.

2.1 Coordinated Batch Processing
2.1.1 Map

The basic concept of map is (1) taking a collection of data and (2) associating a value with each item in
the collection. Consequently, a collection of key-value pairs are generated by matching up the elements of each
input with some related value. Also, the number of collection by mapping operation should be equal to the
number of input data items in the collection. In the view of concurrency, it is important that pairing up keys and
values are independent for each input in the collection.

2.1.2 Reduce

The basic concept of reduce is reducing or merging several different outputs from map phase into a
single output. Reduce operation yields the representative data required for producing the answer to the batch
computation under processing by reducing the data from data item. Similar to map phase, a range of input
should be equal to the one of output. Besides, the reduce phase can be repeated as many or as few times required
in order to yield the output down to a single value over the entire data set. In the view of concurrency,
coordinated batch processing is a typical example because it can frequently happen regardless of the number of
inputs split up. In this sense, it is similar to join which is grouping together the parallel output of different batch
operations.

Manuscript id. 754235539 www.ijstre.com Page 40

http://www.ijstre.com/

Coordinated batch processing for multi-stage MapReduce of huge session data using GPGPU

work -

parallel work

distribution
discrimination :
with GPU -
wsvcionwanori [[N
reduction with CPU - -

histogramming with Splunk -

Fig. 1. Coordinated Batch Processing

2.2 Work Queue

We adopt work queue which is the basic form of our pipeline. In Figure 2, work queue manage runs in
batch processing. The right side on Figure 2 shows discriminator threads by which each piece of work is
independent of each other and can be processed without interactions. The main purpose of design of the work
system is to ensure that each chunk of work is processed within a certain amount of time.

_l Discriminator
Thread1

Work Items

[l
Ll

g 2
Discriminator

Thread2
\ J

s ~

Discriminator
Thread3

\ J

Batch 1 - Batch 2
Fig. 2. Work Queue Pattern

In Figure 2, each discriminator thread adopts the function for differentiating incoming / outgoing
traffic. Whole process run in work queue design pattern. At batch 1, data chunks are put in several storage area.
At batch 2, discriminator thread is assigned to each data piece on the right side of Figure 2. Workers are scaled
up or scaled down to ensure that the work can be handled. An illustration of a generic work queue is shown in
Figure 2.

2.3 Discriminator Thread
Discriminator threads discussed in section 1.1 adopts the Thrust transform function for dividing session
into ingoing or outgoing.

Manuscript id. 754235539 www.ijstre.com Page 41

http://www.ijstre.com/

Coordinated batch processing for multi-stage MapReduce of huge session data using GPGPU

source IP address IP address range

X.X.X. X Y.Y.Y.0/Z
J; i
X. X. X. X /Z——— !

! thrust::bit_and J thrust::bit_and
| :
11111111 01010101 10101010 00000000 11111111 01010101 10101010 00000000
I3 £

thrust::bit_minus

Fig. 3. Traffic Discrimination with Thrust::transform()
The detailed illustration of the discrimination process is shown in Figure 3.

Listing.1. Discrimination Threads

1 thrust::transform(IPaddress_dv.begin(), IPaddress_dv.end(), netmask_dv.begin(),
masked_IPaddress_dv.begin(), thrust::bit_and<unsigned long>());

2: thrust::transform(masked_IPaddress_dv.begin(), masked_IPaddress_dv.end(), address_to_match_dv.begin(),
result_dv.begin(), thrust::minus<double>());

2.4 Reduction with SPL Commands
At reduction phase, we also use Splunk. Splunk provides SPL (Search Processing Language) which is

an expansive processing language for reducing or transforming large amounts of data into specific and relevant
pieces of information. While SQL is implemented to search relational database based on columns, SPL is
implemented to search events based on fields. SPL makes us check data which refers to fields whereas in SQL
we check data which referes to table or column. We use two SPL commands of timechart and streamstat as
follows:

Timechart command provides a statistical aggregation to a field to yield a chart with X-axis used as
time. By using timechart command, we can specify a split-by field, in which each value of the split-by field
corresponds to a series in the chart. Besides, with the split-by clause, you can construct a queue in detal further.
An example of timechart command in our system is as follows:

Listing.2. Timechart Command

source="/mnt/data/sinet/aws/*" host="h-dev03" sourcetype="csv" earliest=-15d@d latest=-1d@d |
timechart sum(count) span=10m

Streamstats command provides cumulative summary statistics of search result in a streaming manner.
This command calculates statistics for each event at the time when the event is seen. The output of streamstats is
figured out by applying the values in the specified field for every event under processing, up to each current
event. Consequently, streamstas works on the group of outputs as a whole by calculating statistics for each
event. An example of streamstats command in our system is as follows:

Listing.3. Streamstats Command

source="/mnt/data/geo//*" host="h-gpu03" sourcetype="csv"
earliest=-15d@d latest=-1d@d

| timechart count as count span=10m

| streamstats window=12 avg(count)

Manuscript id. 754235539 www.ijstre.com Page 42

http://www.ijstre.com/

Coordinated batch processing for multi-stage MapReduce of huge session data using GPGPU

as avg stdev(count) as stdev

| eval lower_bound = avg - stdev * 2

| eval upper_bound = avg + stdev * 2

| eval isOutlier = if(count>upper_bound

OR count<lower_bound, 1, 0) | fields - avg stdev

1. TooLs
3.1 Thrust Template Library

Thrust is a C++ template library, both implementing and facilitating the implemtation of parallel
algorithms. Thrust's syntax resembles the Standard Template Library (STL), making it easy for seasoned C++
programmers to transition to parallel programming without going through the process of mastering complex
tools like CUDA. Data in Thrust are stored in two types of vectors, which are functionally equivalent to the STL
vector template class:

(1) For data residing in host memory.
(2) For data residing in device memory.

The novelty about using these vector types in that data transfer between the host and the device or vice
versa, is implemented by overloading the assignment operator. Thrust provides efficient implementations for a
number of important algorithms which can be used as building blocks to problem solutions. These including
sorting, scanning, subset selection and reduction implementations. Not only does Thrust boost programmer
productivity and program readability and maintenance, but it can also boost performance because it can adjust
the execution configuration to the available GPU capabilities and resources. These algorithms fall into five
categories.

(1) Transformations.

(2) Sorting and searching

(3) Reductions

(4) Scans/prefix-sums

(5) Data management/manipulation

Transformations operate an input sequence by applying a supplied operation on each element. Contrary
to reduction, the produced output is equal to size (in terms of granularity) to the input.

3.2 Intel Threading Building Block

Intel Threading Building Blocks offers a rich and complete approach to expressing paarallelism in a
p++ program. It is a library that helps you leverage multi-core processor performance without having to be a
threading expert. Threading Building Blocks is not just a threads-replacement library; it represents a higher-
level, task-based parallelism that abstracts platform details and threading mechanisms for performance and
scalability. Highly concurrent containers are very important because standard Template Library (STL)
containers generally are not concurrency-friendly, and attempts to modify them concurrently can easily corrupt
the containers. As a result, it is standard practice to wrap a lock (mutex) around STL containers to make them
safe for concurrent access, by letting only one thread operate on the container at a time. But that approach
eliminates concurrency, and thus is not conducive to multi-core parallelism. Intel Threading Building bblocks
provides highly concurrent containers that permit multiple threads to invoke a method simultaneously on the
same container. At this time, a concurrent queue, vector, and hash map are provided.

(1) concurrrent queue

(2) vector

(3) hashmap

All of these highly concurrent containers can be used with this library, OpenMP, or raw threads.

Manuscript id. 754235539 www.ijstre.com Page 43

http://www.ijstre.com/

Coordinated batch processing for multi-stage MapReduce of huge session data using GPGPU

3.3 Splunk and SPL commands

Splunk is a semi-structured time series database which can be used to index, search and analyze
massive heterogeneous datasets. Now, as we have a large amount of data, there is a need for a platform or toll
which can be used to create visualizations and derive insights and patterns to make informed business decisions
beforehand. To overcome all these challenges of big data, Splunk came into the picture. Splunk is a big data tool
that generates insights and reveals patterns, trends and associations from machine data. It is a powerful and
robust big data tool used to derive real-time or near real-time insights, and it enables you to take informed
corrective measures. Splunk can be put to use data generated from any source and available in a human readable
format. Splunk is a feature-rich tool.

SPL provides over 140 commands that allow you to search, correlate, analyze and visualize any data—
an incredibly powerful language that can be summarized in five key areas. Splunk’s search processing language
(SPL) helps you rapidly explore massive amounts of machine data to find the needle in the haystack and
discover the root cause of incidents. IT operations that used to take days or months can now be accomplished in
a matter of hours. Once you learn how powerful SPL is, you will wonder how you ever managed without it.
When translating from any language to another, often the translation is longer because of idioms in the original
language. Some of the Splunk search examples shown below could be more concise, but for parallelism and
clarity, the SPL table and field names are kept the same as the SQL example.

AV DESIGN PATTERNS

4.1 Pairwise Reduction Pattern using CUDA Thrust

A common way to accomplish parallel addition using GPGPU is pairwise reduction. In pairwise
reduction, a chunk contains a pair of elements (key value). A thread sums two elements to yield one partial
result.
These intermediate results are stored in-place in the original input vector. Then, new values (sums) are used to
input for summing in the next generation. For each iteration, the number of input values halves, which results in
that a final sum has been figured out when the length of output vector reaches one. Parallel reduction is one of
the most popular parallel pattern.

Pairwise reduction pattern
CUDA Thrust (reduce by key())

-

% % Lo
= Dﬂf‘:‘ J
[="
B0

Merge scatter pattern
Intel TBB(Concurrent Hashmap)

RECOEF [4,s6224
JAXOEEOC
B

"2019/07/02 00:00:47.132",“214652”
Fig. 4. Two Design Patterns of MapReduce

Manuscript id. 754235539 www.ijstre.com Page 44

http://www.ijstre.com/

Coordinated batch processing for multi-stage MapReduce of huge session data using GPGPU

The output of histogramming is map such as <timestamp, count> and <timestamp, bytes>. Once the
session data is loaded into device memory, histogramming can be executed on GPU. In this step, we use CUDA
Thrust template library. Thrust is a C++ template library for CUDA based on the Standard Template Library
(STL). Thrust allows you to implement high performance parallel applications with minimal programming
effort through a high-level interface that is fully interoperable with CUDA C.

Thrust provides a rich collection of data parallel primitives such as scan, sort, and reduce, which can be
composed together to implement complex algorithms with concise, readable source code. By describing your
computation in terms of these high-level abstractions you provide Thrust with the freedom to select the most
efficient implementation automatically. As a result, Thrust can be utilized in rapid prototyping of CUDA
applications, where programmer productivity matters most, as well as in production, where robustness and
absolute performance are crucial. We use cudaSetDevice(i) which sets device as the current device (i) for the
calling host thread. The key point here is that GPU device ID is corresponding to thread ID by taking the
argument of cudaSetDevice for thread_id. The result_A and d\ B is stored in local memory for each thread. As
shown in upper side of Figure 4, CUDA Trust API is invoked in eash Pthread in parallel. At line 8,
cudaSetDevice is invoked to assign GPU to the reduction operation. We use cudaSetDevice(i) which sets device
as the current device for the calling host thread. The key point here is that GPU device ID is correnponding to
thread ID by taking the argument of cudaSetDevice for thread\ id. The result d_A and d\ B is stored in local
memory for each thread.

Listing.4. Pairwise Reduction

1: void transfer(unsigned long long *key,

2: long *value, int kBytes, int vBytes,
3 int thread_id)
4: {

5. unsigned long long *d_A,;
6: long *d_B;
7-
8
9

cudaSetDevice(thread_id);
cudaMalloc((unsigned long long**)&d_A,

10: kBytes);

11: cudaMalloc((long**)&d_B, vBytes);

12: cudaMemcpy(d_A, key, kBytes,

13: cudaMemcpyHostToDevice);

14: cudaMemcpy(d_B, value, vBytes,

15: cudaMemcpyHostToDevice);

16: reduce():

17:}

At line 12-15, program transfer data to device memory of each GPU. At line 16, reduce() is called.

4.2 Merge Scatter Pattern using Intel TBB

In the merge scatter pattern, associative and commutative operators are provided for merging elements
in case of a collision. With the nature of this pattern, scatter could occur in any order. Therefore, both
associative and commutative properties are required. An example that uses addition as the merge operator is
shown in Figure 4. It is straightforward to adopt merge scatter pattern to implement histograms. with the adding
operation. The interval length of aggregation of our system is millisecond. Approximately, the granularity of
histogramming is around 86,000,000 (60 * 60 * 24 * 1000 = 86,400,000). From our experience, it is difficult to
evade lock contention to store 86,000,000 key-value into hash map in parallel. We give up using concurrent
hash map which is effected by lock contention. Instead, key-value can be represented by using the defining

Manuscript id. 754235539 www.ijstre.com Page 45

http://www.ijstre.com/

Coordinated batch processing for multi-stage MapReduce of huge session data using GPGPU

namespace such as X1<timestamp>, X1<count> and X2<timestamp> and X2<bytes>. Containers provided by
Intel TBB offer a much higher level of concurrency, via one or both of the following methods:

Multiple threads operate on the container by locking only those portions they really need to lock. As
long as different threads access different portions, they can proceed concurrently.
Different threads account and correct for the effects of other interfering threads.

Notice that highly-concurrent containers come at a cost. They typically have higher overheads than
regular STL containers. Operations on highly-concurrent containers may take longer than for STL containers.
Therefore, use highly-concurrent containers when the speedup from the additional concurrency that they enable
outweighs their slower sequential performance. A concurrent\ vector $ <T> $ is a dynamically growable array
of T. It is safe to grow a concurrent_vector while other threads are also operating on elements of it, or even
growing it themselves.

ue

Y

[+ 30 ; ;l; 1;-9 200 250 _!-';zl 15‘-:1 "r";
Fig. 5. CPU Idle Time in Processing Session Data of 97GB

V. EXPERIMENTAL RESULTS
In experiment, we use workstation with Intel(R) Xeon(R) CPU E5-2620 v4 (2.10GHz) and 512GB

RAM. Figure 5 depicts CPU idle time in processing session data with 400,000,000 lines of 97 GB. X-axis of
processing time (sec). Y-axis is CPU idle time. We have launched 48 POSIX Pthreads in both cases of Figure 5
and 6. In Figure 5, CPU idle time is decreased in first 15 seconds down to about 56 \%. Then, it is increased to
about 100 \% in the last 15 seconds. Total elapsed time in processing 400,000,000 lines of 97 GB is about 390
seconds.

1004 4

%0 r "

40

| . ol

0 %o 1000 1500 2000

Fig. 2. CPU Idle Time in Processing Session Data of 400GB

Manuscript id. 754235539 www.ijstre.com Page 46

http://www.ijstre.com/

Coordinated batch processing for multi-stage MapReduce of huge session data using GPGPU

Figure 6 depicts CPU idle time in processing session data with 2,000,000,000 lines of 400 GB. X-axis
of processing time (sec). Y-axis is CPU idle time. On contrast to Figure 5, CPU idle time goes to plateau around
15 to 600 seconds. Then, it is decreased to about 55 \% during from about 600 to 1900 seconds

It has been turned out that proposal system is robust to the size of session data ranging from 97GB to
400 GB in the point of CPU idle time. That is, proposal system can provide stable resource utilization regardless
of the size of huge session data.

VI. RELATED WORK

Fusco et al. proposes a methodology for indexing large amount of packets data per second by
leveraging GPGPU [4]. Shredder [1] leverages GPU for the design of a high performance content-based
chunking framework for supporting incremental storage and computation systems. There have been many
research efforts on understanding traffic pattern of large-scale networks. Particularly, Li et al. proposes an
empirical analysis of mobile user access pattern of huge cloud storage service [6]. In [10], Wang et al. show
mobile traffic patterns of large scale networks in urban environment by gathering data in cellular towers.
Sandiana National Laboratories (SNL) adopts Splunk for managing the Red Sky Supercomputer [9]. Bitincka et
al. adopts Splunk for optimizing data analysis with a semi-structured time series database [2]. GPUs were
initially designed for graphics rendering, but, because of their cost effectiveness, they were quickly adopted by
the HPC community for scientific computations [7]. GPUs have also been used to accelerate functions such as
pattern matching [5], network coding [8]. Ando [11] proposes a lock-free algorithm of data clustering using
GPGPU. Ando [12] proposes a Multi-GPU based pipeline system with ELK stack.

VII. CONCLUSION
The Science Information Network (SINET) is a Japanese academic backbone network for more than

800 universities and research institutions. We have introduced the method of coordinated patch processing for
coping with large scale session data using MapReduce framework. Our coordinated batch processing is divided
into two design patterns: pairwise reduction and merge scatter reduction. In pairwise reduction, a chunk contains
a pair of elements (key value) on GPGPU. On the other hand, the merge scatter pattern enables our system to
associative and commutative operators are provided for merging elements in case of a collision on the container
of Intel TBB. Besides, we introduce a multi-stage Reduce processing using GPU clusters to accelerate the
processing of our pipeline. At the end of our pipeline, Splunk time-series indexer provides the operational
insight for handling security incident response of security operation team in SINET. In experiment, we have
measured CPU utilization in processing large scale session log file. It has been turned out that proposal system
is robust to the size of session data ranging from 97GB to 400 GB in the point of CPU idle time. We can
conclude proposal system can provide stable resource utilization regardless of the size of huge session data. In
addition, we can avoid the unreasonable CPU utilization with the help of GPGPU. For further work, time-series
analysis such as LSTM [13] could be applied to our pipeline design.

VIII. Acknowledgements
Author would like to thank NII1-SOCS operation team.

REFERENCES

[1] Pramod Bhatotia, Rodrigo Rodrigues, and Akshat Verma. Shredder: Gpu-accelerated incremental storage and
computation. In the 10th USENIX conference on File and Storage Technologies, page 14, 2012.

[2] Ledion Bitincka, Archana Ganapathi, Stephen Sorkin,and Steve Zhang. Optimizing data analysis with a
semistructured time series database. In Workshop on Managing Systems via Log Analysis and Machine Learning
Techniques, 2010.

[3] Brendan Burns. Designing distributed systems: Patterns and paradigms for scalable. In March 13, 2018, 2018.

[4] Xenofontas A. Dimitropoulos Francesco Fusco, Michail Vlachos and Luca Deri. Indexing million of packets per
second using gpus. In Internet Measurement Conference, pages 327-332, 2013. Internet Measurement Conference.

[5] SHOJANIA H., LI B, , and WANG X. Nuclei. Gpuaccelerated many-core network coding. In IEEE Infocom, pages
459-467, 2009.

Manuscript id. 754235539 www.ijstre.com Page 47

http://www.ijstre.com/

Coordinated batch processing for multi-stage MapReduce of huge session data using GPGPU

(6]

[7]

(8]
(9]
[10]

[11]

[12]

[13]

Zhenyu Li, Xiaohui Wang, Ningjing Huang, Mohamed Ali Kafar, Zhenhua Li, Jianer Zhou, Gaogang Xie, and Peter
Steenkiste. An empirical analysis of a large-scale mobile cloud storage service. In Internet Measurement Conference,
pages 287-301, 2016. Internet Measurement Conference.

J. D. LUEBKE OWENS, D.GOVINDARAJU, N.HARRIS, M.KRGER, J.LEFOHN, , and T. J. PURCELL. A survey
of general-purpose computation on graphics hardware. In Computer Graphics Forum 26, 1 (2007), pages 80-113,
2007.

R. SMITH, GOYAL N., ORMONT J., SANKARALINGAM. K, and ESTAN. C. Evaluating gpus for network packet
signature matching. In le International Symposium on Performance Analysis of Systems and Software, 20009.

Jon Stearley, Sophia Corwell, and Ken Lord. Bridging the gaps: Joining information sources with splunk. In
Workshop on Managing Systems via Log Analysis and Machine Learning Techniques, 2010.

Huandong Wang, Fengli Xu, Yong Li, Pengyu Zhang, and Depeng Jin. Understanding mobile traffic patterns of large
scale cellular towers in urban environment. In Internet Measurement Conference, pages 225-238, 2015.

Ruo Ando, A lock-free algorithm of tree-based reduction for large scale clustering on GPGPU. In Proceedings of the
2nd International Conference on Artificial Intelligence and Pattern Recognition, ACM 2019, ISBN 978-1-4503-7229-
9, AIPR 2019, pp129-133, 2019

Ruo Ando, "Multi-GPU Accelerated Processing of Time-Series Data of Huge Academic Backbone Network in ELK
Stack”, Usenix LISA 2019 (33th Large Installation System Administration Conference Large Installation System
Administration Conference) October 28-30, 2019 Portland, OR, USA 10 2019

Ruo Ando, Yoshiyasu Takefuji: “A constrained recursion algorithm for batch normalization of tree-sturctured
LSTM”, CoRR abs/2008.09409 (2020)

Manuscript id. 754235539 www.ijstre.com Page 48

http://www.ijstre.com/

